Contents

1 - Overview .. 9
 1.1 – How to Use unIFY Control Panel ... 9

2 - Installing the Software .. 10
 2.1 – PC Requirements .. 10
 2.2 – Installation Method ... 10

3 - Application Features and Functions .. 12
 3.1 – Network Interface Selection ... 12
 3.2 – Main Application Window ... 13
 3.3 – Dante Domain Manager™ Available Servers ... 14
 3.4 – Dante™ Device List .. 14
 3.4.1 – Dante™ and Parameter Locks ... 15
 3.4.2 – Channel Names .. 15
 3.4.3 – Device Context Menu .. 16
 3.5 – AES67 Device List ... 17
 3.5.1 – Device Context Menu .. 17
 3.6 – AES67 Stream List .. 17
 3.7 – Menu and Tool Bar Functions .. 18
 3.7.1 – Refresh Device List ... 18
 3.7.2 – Network Interface .. 18
 3.7.3 – Dante™ Controller ... 18
 3.7.4 – Help .. 18
 3.8 – Multi-Device Preset Load ... 19
 3.9 – Smart Firmware Updater ... 20

4 - Device Configuration ... 21
 4.1 – Device Info ... 21
 4.2 – Preset Configuration .. 22
 4.2.1 – Save Presets ... 22
 4.2.1.1 – Save: Device Presets ... 22
 4.2.1.2 – Save: File Presets ... 22
 4.2.2 – Load Presets .. 22
 4.2.2.1 – Recall – Device Presets ... 22
 4.2.2.2 – Recall – File Presets ... 22

5 - unDIO2X2 Configuration ... 23
 5.1 – unDIO2X2 Inputs .. 23
 5.1.1 – Dante™ TX Channel Name .. 23
 5.1.2 – Preamp Control ... 23
 5.1.3 – Dante™ TX Channel Status .. 23
 5.2 – unDIO2X2 Outputs .. 24
 5.2.1 – Dante™ RX Channel Name .. 24
 5.2.2 – Gain Control ... 24
 5.2.3 – RX Channel Assignment .. 24

6 - unDIO2X2+ Configuration .. 25
 6.1 – unDIO2X2+ Inputs ... 25
 6.1.1 – Dante™ TX Channel Name .. 25
 6.1.2 – Preamp Control ... 25
 6.1.3 – Dante™ TX Channel Status .. 25
 6.2 – unDIO2X2+ Outputs ... 26
 6.2.1 – Dante™ RX Channel Name .. 26
 6.2.2 – Volume Control ... 26
 6.2.3 – Mute Control .. 26
 6.2.4 – RX Channel Assignment .. 26

7 - unDX2IO Configuration .. 27
 7.1 – unDX2IO Inputs .. 27
 7.1.1 – Dante™ TX Channel Name .. 27
 7.1.2 – Preamp Control ... 27
 7.1.3 – Dante™ TX Channel Status .. 27
 7.2 – unDX2IO Outputs ... 28
 7.2.1 – Dante™ RX Channel Name .. 28
8 - unDX2I+ Configuration

8.1 - unDX2I+ Inputs
8.1.1 - Dante™ TX Channel Name
8.1.2 - Preamp Controls (Inputs 1 & 2 only)
8.1.3 - Pad Controls (Inputs 3 & 4 only)
8.1.4 - Dante™ TX Channel Status

8.2 - unDX2I+ Outputs
8.2.1 - Dante™ RX Channel Name
8.2.2 - Volume Control
8.2.3 - Mute Control
8.2.4 - RX Channel Assignment

9 - unD3I0 Configuration

9.1 - unD3I0 Inputs
9.1.1 - Dante™ TX Channel Name
9.1.2 - Preamp Control
9.1.3 - Input Select Control
9.1.4 - Dante™ TX Channel Status

9.2 - unD3I0 Outputs
9.2.1 - Dante™ RX Channel Name
9.2.2 - RX Channel Assignment

10 - unD6I0 Configuration

10.1 - unD6I0 Inputs
10.1.1 - Dante™ TX Channel Name
10.1.2 - Preamp Control
10.1.3 - Input Select Control
10.1.4 - Dante™ TX Channel Status

10.2 - unD6I0 Outputs
10.2.1 - Dante™ RX Channel Name
10.2.2 - Output Volume/Mute Control
10.2.3 - RX Channel Assignment

11 - unD6I0-BT Configuration

11.1 - unD6I0-BT Inputs
11.1.1 - Dante™ TX Channel Name
11.1.2 - Status
11.1.3 - Connected Device
11.1.4 - Activate Pairing
11.1.5 - Disable Pairing Button
11.1.6 - Close Connection
11.1.7 - Clear Pairings
11.1.8 - Bluetooth® Friendly Name
11.1.9 - Bluetooth® Connect Modes
11.1.9.1 - Manual Mode
11.1.9.2 - Reconnect Mode
11.1.9.3 - Exclusive Mode
11.1.10 - Audio Bridging
11.1.10.1 - Media Bridging (only)
11.1.10.2 - Call Bridging (only)
11.1.10.3 - Call & Media Bridging
11.1.11 - Dante™ TX Channel Name
11.1.12 - Input Select Control
11.1.13 - Dante™ TX Channel Status

11.2 - unD6I0-BT Outputs
11.2.1 - Dante™ RX Channel Name
11.2.2 - Output Volume/Mute Control
11.2.3 - RX Channel Assignment

11.3 - AVRCP Control

12 - unDX4I Configuration

12.1 - unDX4I Inputs
12.1.1 - Dante™ TX Channel Name
12.1.2 - Preamp Control
12.1.3 - Dante™ TX Channel Status
12 - unDX4I Configuration

- 12.2.1 - Dante™ RX Channel Name ... 44
- 12.2.2 - Output Volume/Mute Control ... 44
- 12.2.3 - RX Channel Assignment ... 44

13 - unD4I Configuration

- 13.1 - unD4I Inputs .. 45
 - 13.1.1 - Dante™ TX Channel Name ... 45
 - 13.1.2 - Preamp Control ... 45
 - 13.1.3 - Dante™ TX Channel Status .. 45

14 - unD4I-L Configuration

- 14.1 - unD4I-L Audio Config ... 46
 - 14.1.1 - Dante™ TX Channel Name .. 47
 - 14.1.2 - Preamp Control ... 47
 - 14.1.3 - Dante™ TX Channel Status .. 47
- 14.2 - unD4I-L Logic Monitor ... 48
 - 14.2.1 - Logic Inputs .. 48
 - 14.2.2 - Logic Outputs ... 48
- 14.3 - unD4I-L Event Messages/Modes .. 49
 - 14.3.1 - Analog Triggered Mode ... 49
 - 14.3.2 - Analog Timed Mode .. 50
 - 14.3.3 - Digital Mode .. 50
 - 14.3.4 - Event Messages ... 50
- 14.4 - Logic-Network Config ... 51

15 - unDNEMO Configuration

- 15.1 - Channel Configuration ... 52
- 15.2 - Stereo Channel Configuration .. 53
- 15.3 - Device Configuration ... 53
 - 15.3.1 - Button Backlight Brightness ... 54
 - 15.3.2 - Display Brightness .. 54
 - 15.3.3 - Mode Setup .. 54
 - 15.3.3.1 - All Input Mode .. 54
 - 15.3.3.2 - USB Mode ... 54
 - 15.3.3.3 - Line Mode ... 54
 - 15.3.3.4 - Stereo .. 54
 - 15.3.3.5 - Dante™ TX Audio ... 54
 - 15.3.3.6 - Menu Mode User Access ... 54
 - 15.3.3.7 - Display Timeout .. 54
- 15.4 - Network Config ... 55

16 - unDNEMO-BT Configuration

- 16.1 - Mono Channel Configuration ... 56
- 16.2 - Stereo Channel Configuration .. 57
- 16.3 - Device Configuration ... 57
 - 16.3.1 - Button Backlight Brightness ... 58
 - 16.3.2 - Display Brightness .. 58
 - 16.3.3 - Mode Setup .. 58
 - 16.3.3.1 - All Input Mode .. 58
 - 16.3.3.2 - USB Mode ... 58
 - 16.3.3.3 - Aux In Mode ... 58
 - 16.3.3.4 - Stereo .. 58
 - 16.3.3.5 - Dante™ TX Audio ... 58
 - 16.3.3.6 - Menu Mode User Access ... 58
 - 16.3.3.7 - Enable Front Panel Lock (Remote) 58
- 16.4 - Bluetooth® Setup ... 59
 - 16.4.1 - Clear Pairings ... 59
 - 16.4.2 - Bluetooth® Reset ... 59

17 - unBT2A Configuration

- 17.1 - Control Port Selection ... 60
- 17.2 - Bluetooth® Configuration .. 61
 - 17.2.1 - Bluetooth® Friendly Name .. 61
 - 17.2.2 - Status .. 61
 - 17.2.3 - Disable Pairing Button .. 61
 - 17.2.4 - Audio Output ... 61
unIFY Control Panel V3.2.2
User Manual

18 – Clockaudio CDT100 Configuration ... 62
18.1 – CDT100 MIC Inputs .. 62
18.1.1 – Dante™ TX Channel Name ... 62
18.1.2 – Phantom Power Control ... 62
18.1.3 – Dante™ TX Channel Status ... 62
18.2 – CDT100 LED / ARM-C Configuration .. 63
18.2.1 – Asynchronous IP Address and Port .. 63
18.2.2 – ARM-C / Switch ID Controls .. 63
18.2.3 – CH32 Controls ... 63

19 – Clockaudio CDT100 Mk II Configuration .. 64
19.1 – CDT100 Mk II MIC Inputs ... 64
19.1.1 – Dante™ TX Channel Name ... 64
19.1.2 – Phantom Power Control ... 64
19.1.3 – Dante™ TX Channel Status ... 64
19.2 – CDT100 Mk II LED / ARM-C Configuration .. 65
19.2.1 – Asynchronous IP Address and Port .. 65
19.2.2 – ARM-C / Switch ID Controls .. 65
19.2.3 – TS-1 Controls ... 65

20 – Clockaudio CDT3 Configuration .. 66
20.1 – CDT3 MIC Inputs ... 66
20.1.1 – Dante™ TX Channel Name ... 66
20.1.2 – Dante™ TX Channel Status ... 66
20.2 – CDT3 LED Configuration .. 67
20.2.1 – TS-1 Controls ... 67

21 – unHX2D Configuration ... 68
21.1 – HDMI Setup ... 68
21.1.1 – HDMI Status .. 68
21.1.2 – HDCP Enable .. 68
21.1.3 – Force HPD On ... 68
21.1.4 – EDID Management ... 69
21.2 – Analog Input Setup .. 69
21.3 – Audio Output Setup ... 69
21.4 – Internal Routing Matrix ... 70
21.1 – Dante™ Subscription Status .. 70

22 – Synapse D32i Configuration ... 71
22.1 – Bank Pad Control ... 71
22.2 – Mute All On/Off ... 71
22.3 – Front Panel Lock ... 71
22.4 – Dante™ TX Channel Name ... 71
22.5 – Mute ... 71

23 – Synapse D32o Configuration ... 72
23.1 – Control .. 72
23.1.1 – Mute All On/Off .. 72
23.1.2 – Display Timeout ... 72
23.1.3 – Front Panel Lock .. 72
23.1.4 – Dante™ TX Channel Name ... 72
23.1.5 – Pre/Post Metering .. 73
23.1.6 – Channel Mute ... 73
23.1.7 – Channel Volume ... 73
23.2 – Output Remapping .. 73

24 – Synapse D16Mio Configuration .. 74
24.1 – Mute All On/Off ... 74
24.2 – Front Panel Lock ... 74
24.3 – Display Timeout .. 74
24.4 – Pre/Post Metering ... 74
24.5 – Input Controls ... 75
24.5.1 – Channel Mute ... 75

© Attero Tech LLC 2018

Page 5
24.5.2 - P48 Phantom Power .. 75
24.5.3 - Mic/Line Level Input Selector ... 75
24.5.4 - Preamp Gain ... 75
24.6 - Output Controls ... 76
24.6.1 - Channel Mute ... 76
24.6.2 - Channel Volume .. 76

25 - Synapse DM1 Configuration ... 77
25.1 - Monitoring ... 77
25.1.1 - Monitoring Levels ... 77
25.1.2 - Line Input 1/2 ... 77
25.1.3 - Line Output 1/2 ... 77
25.1.4 - Device Setup .. 77
25.1.4.1 - Display Timeout ... 77
25.1.4.2 - Front Panel Lock ... 77
25.1.4.3 - HP Jack Detect ... 77
25.2 - Channel Configuration .. 78
25.2.1 - Standard Mode ... 78
25.2.2 - Extended Mode ... 79
25.2.3 - Stereo Mode ... 80

26 - unD32 Configuration .. 81
26.1 - Master Mute On/Off ... 81
26.2 - Master Volume .. 81
26.3 - UDP Request/Response ports .. 81
26.4 - Pre/Post Metering ... 82
26.5 - Dante™ RX Channel Name ... 82
26.6 - Channel Mute ... 82
26.7 - Channel Volume ... 82

27 - SoundTube IPD Speaker Configuration .. 83
27.1 - General Settings & Status .. 83
27.1.1 - Pink Noise ... 83
27.1.2 - Status .. 83
27.1.3 - Device Info ... 83
27.1.4 - Older Preset File ... 83
27.2 - BiAmp Mode - Amp Setup ... 84
27.2.1 - Power Mode ... 84
27.2.2 - Impedance Monitor Configuration ... 84
27.3 - BiAmp Mode - DSP Setup ... 85
27.3.1 - Input & Output Controls ... 85
27.3.2 - EQ Section ... 85
27.3.3 - Delay .. 85
27.4 - Full Bandwidth Mode - Amp Setup .. 86
27.4.1 - Power Mode ... 86
27.4.2 - Impedance Monitor Configuration ... 86
27.5 - Full Bandwidth Mode - DSP Setup .. 87
27.5.1 - Input Mode ... 87
27.5.2 - CH1/CH2 .. 87
27.5.3 - Input & Output Controls ... 87
27.5.4 - EQ Section ... 87
27.5.5 - Delay .. 87

28 - Zip4/Zip4+3G Configuration ... 88
28.1 - Device .. 89
28.1.1 - Intensity ... 89
28.2 - Network .. 89
28.2.1 - Device Test ... 89
28.2.2 - Control Server .. 89
28.3 - Security .. 90
28.3.1 - Unlock Mode .. 90
28.3.2 - Lock Behavior ... 90
28.3.3 - Security Code .. 90

29 - unAIO2X2+ Configuration ... 91
29.1 - Device Control ... 92
29.1.1 - Preamp Control ... 92
unIFY Control Panel V3.2.2
User Manual

29.1.2 - Output Volume Control ..92
29.1.3 - Mute Control ..92
29.1.4 - RX Channel Assignment ...92
29.1.5 - Metering ..92
29.2 - Stream Control ..93
 29.2.1 - AES67 Tx Setup ..93
 29.2.2 - AES67 Rx Setup ..94
 29.2.3 - AES67 Status ...94
 29.2.4 - Device Configuration ..94

30 - unA4O Configuration ..95
 30.1 - Device Control ...95
 30.1.1 - Output Volume Control ..95
 30.1.2 - Mute Control ..95
 30.1.3 - RX Channel Assignment ..96
 30.1.4 - Metering ..96
 30.2 - Stream Control ..96
 30.2.1 - AES67 Tx Setup ..96
 30.2.2 - AES67 Rx Setup ..97
 30.2.3 - AES67 Status ..97
 30.2.4 - Device Configuration ..97

31 - unAX21O+ Configuration ...98
 31.1 - Device Control ...99
 31.1.1 - Preamp Controls (Inputs 1 & 2 only) ...99
 31.1.2 - Pad Controls (Inputs 3 & 4 only) ..99
 31.1.3 - Volume Control ..99
 31.1.4 - Mute Control ..99
 31.1.5 - RX Channel Assignment ...99
 31.1.6 - Metering ..99
 31.2 - Stream Control ...100
 31.2.1 - AES67 Tx Setup ..100
 31.2.2 - AES67 Rx Setup ..101
 31.2.3 - AES67 Status ..101
 31.2.4 - Device Configuration ..101

32 - unA61O Configuration ..102
 32.1 - Device Control ...103
 32.1.1 - Preamp Control ..103
 32.1.2 - Input Select Control ...103
 32.1.3 - Volume Control ..103
 32.1.4 - Mute Control ..103
 32.1.5 - RX Channel Assignment ...103
 32.1.6 - Metering ..103
 32.2 - Stream Control ...104
 32.2.1 - AES67 Tx Setup ..104
 32.2.2 - AES67 Rx Setup ..105
 32.2.3 - AES67 Status ..105
 32.2.4 - Device Configuration ..105

33 - unA61O-BT Configuration ..106
 33.1 - Device Control ...107
 33.1.1 - Bluetooth® Friendly Name ...107
 33.1.2 - Status ..107
 33.1.3 - Disable Pairing Button ...107
 33.1.4 - Clear Pairings ..107
 33.1.5 - Close Connection ...107
 33.1.6 - Input Select Control ...107
 33.1.7 - Volume Control ..108
 33.1.8 - Mute Control ..108
 33.1.9 - RX Channel Assignment ...108
 33.1.10 - Metering ...108
 33.2 - Stream Control ...109
 33.2.1 - AES67 Tx Setup ..109
 33.2.2 - AES67 Rx Setup ..110
 33.2.3 - AES67 Status ..110
 33.2.4 - Device Configuration ..110
34 – unAX4I Configuration..111
 34.1 – Device Control..112
 34.1.1 – Preamplifier Control..112
 34.1.2 – Volume Control..112
 34.1.3 – Mute Control..112
 34.1.4 – RX Channel Assignment..112
 34.1.5 – Metering...112
 34.2 – Stream Control..113
 34.2.1 – AES67 Tx Setup..113
 34.2.2 – AES67 Rx Setup..114
 34.2.3 – AES67 Status...114
 34.2.4 – Device Configuration..114
1 – Overview

The unIFY Control Panel software provides users with a simple tool to monitor and configure Attero Tech devices. It detects connected devices on the configured network automatically showing them in a device list. Once a device is discovered, unIFY can present further details about the device. For Attero Tech devices, unIFY is also used to configure the device settings such as gain and phantom power. This manual is designed to give the user a guide on how to use the Attero Tech unIFY Control Panel to monitor and configure Dante™ devices on a network.

1.1 – How to Use unIFY Control Panel

The steps required to use the software are as follows:

- Install the application
- Run the application (section 3 – Application Features and Functions)
- Configure the network adapter (see section 3.7.2 – Network Interface)
2 – Installing the Software

Note: It is recommended that the installation instructions be read prior to attempting installation of the software.

2.1 – PC Requirements

- Windows 7, 8, 8.1, or 10 (32- or 64-bit versions)
- Wired Ethernet Network Interface Card

2.2 – Installation Method

The software is installed using a single install file which is available from the registered downloads section of the Attero Tech website.

To install the application, double click of the application EXE file to start the application install. At any point during this installation prior to actually installing the files, the installation may be stopped by clicking on the “Cancel” button.

The application is installed by default into C:\Program Files (x86)\Attero Tech\unIFY Control Panel. This location may be changed by clicking on the “Options” button.

A new default location can be typed into the box or click the “Browse” button to browse for the new location. Click OK to accept any changes. Click “Cancel” to undo any changes.

To activate the “Install” button, read the license agreement and if you agree, check the “I accept...” option. Finally, click the “Install” button to initiate the installation of the files.
At this point, Windows may pop up a User Access Account window. If it does, click the “Yes” button to allow the installation to continue.

The installer will then begin copying files and display the progress of the installation.

After this process is successfully completed, click “Close”.

The installation will create a program group and various shortcuts including one to run the program. All of the icons are located under Start Menu -> All Programs -> Attero Tech -> Unify Control Panel.

*Note: The installer also installs a copy of the previous revision (V1.7.x) too for devices like older versions of the unD4I-L that are not supported in the latest version of unIFY and cannot be field updated to a version that is supported. There is no icon created for this version but the .exe can be run by locating the file in the installation folder and running it from there.
3 – Application Features and Functions

The unIFY application is at its heart a networked application. It can be run in a non-networked mode with very limited functionality if the only desired operation is to setup non-networked devices such as the BT2A. For full functionality, a network interface will need to be selected and that interface is then used for both device discovery and communication.

*Note: The BT2A can be configured in either networked mode as well as non-networked mode.

When unIFY is opened, it will check what network adaptor was previously selected and see if it is still valid. If it is, unIFY will start the main application and begin running automatically.

However, if this is first time unIFY is being run or the application was previously run in non-networked mode, or unIFY determines the previous adapter is found to be invalid for any reason, unIFY will first pop up a message asking if the user wishes to continue using the application in non-networked mode with limited functionality. Selecting "Yes" to this message will open the main application in non-networked mode with all the networking features disabled. For full functionality, select "No". At this point, the “Network Interface Selection” window will pop up.

3.1 – Network Interface Selection

The drop-down list will contain a list of selectable network adapters. There will always be a "None" option at the top that allows the software to be used in non-networked mode should that be necessary.

*Note: unIFY must be used with a wired network card. If a USB to Ethernet adapter is used, the USB to Ethernet adapter must be attached to the PC otherwise unIFY may not start up correctly.

If the desired adapter is not found in the drop-down list, select the "None" option to get the main application window open. Once the issue with the network card has been diagnosed and fixed, use the "File" -> "Change Network" menu or the "Network Configuration" button on the button bar to re-open the "Network Interface Selection" window again to check if the correct adapter is now listed.

Once the desired interface is selected, click OK and if all is well, unIFY will then open the main application window.

*NOTE: Windows allows users to configure multiple IP addresses to a single network adapter. However, this feature is not supported by either the Audinate tools such as Dante™ Controller or unIFY Control Panel. Network adapters used to connect to a Dante™ network must either be set to get a dynamic IP address or have a single static IP address.

The network interface can be changed at any time while the application is running.
3.2 – Main Application Window

The application is organized into the following sections:

- Menu and Tool bar
- Dante™ Device List
- Available Domains (Dante Domain Manager™)
- Application canvas
- Status Bar

At the top are the menus and a button toolbar. These allow access to various application functions. The toolbar has a default set of buttons but these may be supplemented by additional buttons as other application features are used. On the left side of the application window is the DDM server and device list. The available domains shows any available DDM servers and allows you to login. The device list shows a list of the detected devices and their current state. The main area of the application window is a canvas which will populate with various controls as the application is used. Finally across the bottom is a status bar which shows application status messages, errors and warnings.
3.3 – Dante Domain Manager™ Available Servers

The Available Servers dropdown displays any Dante Domain Manager™ (DDM) servers on the network. When selected, a prompt will show on the main window to allow login to the domain.

3.4 – Dante™ Device List

The Dante™ device list displays all Dante™ devices from any manufacturer that are detected on the active network interface. Devices are noted in different ways depending on their status as follows:

- Red, strikethrough - Device previously detected that is longer on the network or powered down or may have communication issues (see following paragraph).
- Red, no strikethrough - Device with a communication issue (see following paragraph).
- White, Italicized - Non-Attero device or Attero device that do not have any configurable parameters such as the unD4O or unDUSB.
- White, Bold, non-italicized - Attero device that is good to go and has configuration capabilities that unIFY can be used to change.

All Attero devices should appear in white. For Attero devices that appear in red that have not simply been disconnected from the network or powered down, it is likely that unIFY has a communication issue with that device.

If it is just a single device then a recent change of device name can cause this. A refresh of the device list should fix that (note a single refresh may not immediately work as it takes some time for unIFY to determine the device with the old name is no longer available). Otherwise, the most likely cause of an issue is an IP address conflict where PC and device have IP addresses in different ranges.

However, if all Attero Tech devices in the list indicate red, that may be something more serious. The following issues are known to have caused problems:

- IP Address issue - The PC has an IP that not in the same IP range as all the devices
- 3rd party Firewall / Anti-Virus / Internet Security applications blocking unIFY access to/from the network
- Multicast filtering setup on network that prevents traffic from reaching the PC

The device list can be filtered using search box or the “Show Only” filter option. The “Show Only” filter will adjust the list to show only a specific type product. The search box attempts to match the text in the search box with any part of a devices name in the device list. The search box is case sensitive.
3.4.1 – Dante™ and Parameter Locks

With V3.10 firmware, Dante™ devices have a facility that allows their Dante™ parameters to be locked to prevent changes (see Dante™ Controller help or the Audinate website for further details of this feature). The locked state can only be applied or removed using Dante™ Controller. Some Attero devices also now support a parameter lock to restrict access to the non-Dante™ device features like phantom power and gain. If a device has either its Dante™ lock or parameter lock enabled, a padlock icon will appear next to its name.

*Note: Any active locks on a device also impact what features such as Load/Save presets and firmware updates can be used on a device.

3.4.2 – Channel Names

A device in the device list can be expanded to show or hide its Dante™ audio channels by either double-clicking on the device name or by clicking on the small “+” icon to the left of the device name. Any transmit channels the device has are shown prefixed with a [TX] and any receive channels are shown prefixed with an [RX]. The channel names can be collapsed again by either double-clicking on the device name or by clicking on the small “-” icon to the left of the device name.

When the channels names are being shown, the application allows for the channels names to be changed. Right-clicking on a channel name will show the “Rename” context menu.

*NOTE: Dante™ relies on the device name and channel names for audio routing. Changing the Dante™ channel names therefore may cause audio subscriptions to be lost and that audio will then cease to be transferred. Those subscriptions will need to be re-built using the new channel names for that particular audio to begin flowing again.
3.4.3 – Device Context Menu

Right clicking on a device will open the device context menu.

“Status” shows the device status within the application. This field is typically used for diagnostic purposes. For Attero devices that are working correctly, the “Status” should show “Device Ready”.

The “Device Info” option has a sub-menu that shows specific information about the device. The information shown includes the manufacturer, model name, control type (if known), MCU version (if known), and the device IP address. Not all fields may be populated depending on the devices “Status” and what information is available. Attero Tech devices should populate all fields.

Clicking the “Identify Device” option allow devices on the network to be visually located. This feature will flash the status LEDs, Power LED, or front panel display of the selected device for approximately five seconds to aid identification of the physical location of a device.

NOTE: On Synapse devices, the front panel controls will not operate until the Identify timer is completed.

Clicking the “Configure Device” context menu item will open the associated configuration plug-in for the selected device. This option will only available on supported devices that have a suitable plug-in available. Access to a supported devices plug-in can also be gained by double-clicking on the device name in the device list too. Information about device specific plug-ins can be found in Section 4.
3.5 – AES67 Device List

The AES67 device list displays all AES67-only devices from Attero Tech (other manufacturers AES67 devices will not be shown). Devices that appear in red indicate that there is a problem communicating with that device (it may mean the device is no longer on the network). Devices where communication with them has been successful will be shown in italicized white text. Attero Tech devices that have extended configuration capabilities will be shown in bold white text.

Once a device has been successful, double clicking on a device opens its configuration plug-in

3.5.1 – Device Context Menu

Right clicking on a device will open the device context menu. “Status” shows the device status within the application. This field is typically used for diagnostic purposes. For Attero devices that are working correctly, the “Status” should show “Device Ready”.

The “Device Info” option is a sub-menu that shows specific information about the device. The information shown includes the manufacturer, model name various firmware version details, and the device IP and MAC address. When correctly connected, Attero Tech devices should populate all fields. However, not all fields may be populated depending on the devices “Status” and what information is available.

Clicking the “Identify Device” option allow devices on the network to be visually located. This feature will flash the status LEDs. Power LED, or front panel display of the selected device for approximately five seconds to aid identification of the physical location of a device.

NOTE: On Synapse devices, the front panel controls will not operate until the Identify timer is completed.

Clicking the “Configure Device” context menu item will open the associated configuration plug-in for the selected device. This option will only available on supported devices that have a suitable plug-in available. Information about device specific plug-ins can be found in Section 4 onwards.

3.6 – AES67 Stream List

The AES67 stream list displays all AES67 streams that unIFY detects. It will includes streams from both Attero Tech devices and devices from other manufacturers. Each stream may be expanded to show the individual channels that stream contains.

Streams that appear in red indicate that the stream was previously detected by unIFY but currently that stream is no longer being advertised. This could be because the stream was turned off on the transmit device, has been reconfigured to something different, or the unit that was transmitting that stream is no longer on the network or is powered off.

The stream list is used to route audio to Attero Tech devices when they are being configured (the plug-in for device that will receive the audio needs to be open on the “Stream Configuration” tab). Audio channels may be assigned by clicking and dragging a specific channel from the desired transmit stream and dropping it onto a specific channel of receiver setup in the desired devices plug-in. Doing so will populate both the assigned stream and channel number fields for that output channel. The unIFY application will not allow allocation of a complete stream (by clicking and dragging a device name) in one go. It must be done channel by channel.

The stream also has a diagnostic function. If an AES67 devices plug-in is open, unIFY will check to see if the configuration of the stream the device is receiving differs from that in the stream list. If all is ok, all the streams in the stream list the device is correctly receiving will be highlighted in green. However, if unIFY detects a problem such as the IP address of the stream has now changed, the stream will instead be highlighted in yellow. In such cases, the RX status indicator in the plug-in will also indicate a problem receiving the stream too.
3.7 – Menu and Tool Bar Functions

3.7.1 – Refresh Device List
This feature can be accessed from the toolbar button or an option in the “File” menu. It will refresh the current Dante™ device list shown on the main screen of the application. The discovery process will only detect devices that are connected to the actively selected network adapter within the application.

*Note: If the application is detecting devices but all of the devices are shown in red, that indicates a network conflict and is likely the result of mismatched IP address configuration between the actively selected network interface card and the target Dante™ devices.

3.7.2 – Network Interface
Allows the user to select a different network interface to use with the application. See section 3.1 – Network Interface Selection for details.

3.7.3 – Dante™ Controller
The unIFY Control Panel provides a configuration tool for the device specific parameters of Attero Tech devices. For general device routing or Dante™ network configuration, Attero recommends the use of Dante™ Controller software from Audinate. To simplify system configuration, Dante™ Controller can be launched directly from the unIFY application by clicking the “Dante™ Controller” button or the “Dante™ Controller” option of the “File” menu.

If this option is being used for the first time, it will ask for the location of the installed Dante™ Controller software. If the Dante™ Controller application is not installed on your computer, you may download a copy at the following link.

https://www.audinate.com/products/software/Dante™-controller

Once the program location has been identified, Dante™ Controller will open. Subsequent uses will simply open the Dante™ Controller application.

3.7.4 – Help

The help menu provides access to information about the application version, application plug-in versions and also application help. The application version and plug-in version information can only be accessed via the Help menu while the application help can be accessed via the Help menu or the Help button on the toolbar.

*Note: The application help is provided in the form of a PDF and a suitable reader will need to be available in order for the help to be viewed.
3.8 – Multi-Device Preset Load

In order to simplify device configuration in systems deploying a large number of common Attero Tech devices, the Multi-Device Preset Load tool allows the user to select a device preset that can be applied to multiple devices in one update process. This is accessed through an option in the “Tools” menu.

![Multi-Device Preset Load Tool](image)

When the “Multi-Device Preset Load” menu item is selected, a pop-up window appears asking for the location of a .CFG file. All .CFG files are generated when executing the “Save Presets to File” functionality for a device described in section 4.2.1.2. Once the file is loaded, the main canvas will show the multi-device preset load plug-in. The application will identify all compatible devices which can accept the preset file. These devices will be shown in list along with a progress bar for the preset update progress.

Note: Any devices that have their parameter lock active will have a padlock icon and the progress bar replaced with text warning the device is locked.

Select one or more devices by clicking on the checkbox for each desired device. Alternatively, all devices can be selected for preset loading by pressing the “Select All” button. Once the desired device selections have been made, press the “Start” button to initiate the preset loading process. If at any time the preset loading process needs to be stopped or exited, press the “Close” button.
3.9 – Smart Firmware Updater

For unIFY v2.3 onwards a feature was integrated that adds support for Attero Tech device firmware updates. This functionality is accessed by selecting and launching the Smart Firmware Update from tools menu in the main application window.

To use the updater, first click on the Select File button. This will open a file explorer window for selection of the desired firmware package. The smart firmware updater utilizes .SFU firmware packages. These files are available on the Attero Tech website for all supported products (https://www.atterotech.com/registered-downloads/).

Once the desired file has been selected, the application will search for devices that match the selected firmware update package. The application will also determine the relevant features that require updates on each device.

The discovered device list shows the following information about the device:

- Device Name
- Product Version
- Device Mode – This control allows selection between -C and -U firmware option support for proper integration with the target DSP and/or control system used in the product installation
- Status – Shows the number of required steps for the update based on the current state of the device
- Progress – The top progress bar shows the progress for the current step in the update procedure and the bottom bar shows the overall progress

*Note: If either the Dante™ lock or the parameter lock are active, the device will show up with a padlock next to it and the progress bar will be replaced by text indicated the device has an active lock. No updates will be possible in this device until the lock is removed.

To initiate an update, check the device or devices in the list with their associated checkbox and click on the “Start” button. The smart firmware updater will determine the appropriate portions of the device firmware that require updates, to override this functionality and force a complete update, select the “Force All Updates” checkbox.

The update process can be stopped at any time by pressing the “Cancel” button, however, in order to prevent device lockups the updater will continue until it is safe to cancel the overall update operation.

If a device fails during the update process it will be shown in red after updates to all other selected devices are complete.
4 – Device Configuration

The main function of unIFY is to allow configuration of device parameters for Attero Tech’s products. While the plug-in for a particular type of product is specific to that type, there are some configuration features that are generic across all plug-ins.

4.1 – Device Info

The Device Info panel is shown at the top of any plug-in and is usually accompanied with an image of the device. It contains information about the selected Dante™ device.

There is also a checkbox to enable or disable a latching identify function. Unlike the Identify function on the device context menu of the device list, this Identify function is a toggle and will continue to perform the identify functionality until either manually disabled by the user, the plug-in is closed or by power cycling and resetting the device.

NOTE: On Synapse devices, the front panel controls will not operate until the Identify function is disabled.

Dante™ Lock – The Dante™ lock status is indicated by a padlock icon. If the icon and text are not shown, the device is not programmed with a version of firmware that supports this feature (Note: Firmware updates are available that support this feature for all Attero devices). If the Dante™ lock is active, the padlock icon will be shown locked and no changes to the audio routing or Dante™ network settings can be made. If the Dante™ lock is not active, the padlock will be shown unlocked. *NOTE: The Dante™ lock can only be removed or applied using Dante™ Controller.*

Parameter Lock – When the parameter lock is active, device settings such as gain and phantom power are locked and cannot be altered. The parameter lock also blocks the firmware update and preset load functionality too. To allow changes to be made, the parameter lock checkbox must be unchecked. However, if the Dante™ lock is active, the parameter lock state itself will be locked and cannot be changed. The only way then to unlock the device is to remove the Dante™ lock first.

Refresh – The ‘Refresh’ button is used to refresh the on-screen settings of the device that is being configured. This is useful if there’s an external system or device such as a 3rd party control system that’s communicating with the device and altering settings after the settings on the device have been read by the unIFY software.
4.2 – Preset Configuration

Most devices feature preset capabilities for recalling a previously saved set of settings either from a file on the PC or from non-volatile memory on the target device. When a device is selected for configuration, if the device supports presets, a “Save Presets” button and “Load Presets” button will be added to the toolbar.

4.2.1 – Save Presets

When the “Save Presets” button is pressed, the “Configuration Presets” dialog will open in save mode.

*Note: If the parameter lock is active, the device preset side will be greyed out as the parameter lock prevents any change to device settings. This lock must be removed before a preset can be saved to the device. This may require the Dante™ lock be removed first, if that is also active.

4.2.1.1 – Save: Device Presets

Current settings can be saved to a preset in non-volatile memory on the selected device. Use the dropdown list to select which preset the current settings will be stored to, then click the “Save to Device” button. On all Attero Tech devices, preset 0 is used to store the power-on defaults.

The power-on defaults can be reset back to factory settings with the “Restore Defaults” button. *WARNING: Use this with care!*

4.2.1.2 – Save: File Presets

Current settings can also be stored off to a file. The file created can be used to apply the same settings to multiple devices (see Multiple Device Preset Load feature). It can also be stored off as a back-end recalled later if needed.

4.2.2 – Load Presets

When the “Load Presets” button is pressed, the “Configuration Presets” dialog will open in “Load” mode.

Note: If the parameter lock is active, loading a preset will not be possible as configuration changes are blocked. A warning will instead pop up warning the user that the parameter lock is active. This lock must be removed before a preset can be loaded. This may require the Dante™ lock be removed first, if that is also active.

4.2.2.1 – Recall – Device Presets

Update the current settings from a previously stored preset in non-volatile memory on the device. Use the dropdown list to select the desired preset, then click the “Recall from Device” button.

4.2.2.2 – Recall – File Presets

Use the “Load from File” button to update the current device settings from a file which was previously saved using the “Save Preset to File” feature.

Refer to the specific device configuration details for information on the preset capabilities of each device.
5 – unDIO2X2 Configuration

The configuration form for the unDIO2x2 is organized into the following key sections:

- Inputs
- Outputs

*Note: Any changes made to device settings will only persist until power is cycled on the device. To retain the settings, they must be stored to Preset 0 using the “Save Presets” feature within unIFY Control Panel.

5.1 – unDIO2X2 Inputs

5.1.1 – Dante™ TX Channel Name

This text field reports the Dante™ transmit channel name shown on the Dante™ network for corresponding analog input channel.

*Note: This field is non-editable. To edit the channel names, use the device list view control or use Dante™ Controller.

5.1.2 – Preamp Control

The Preamp Control section allows the user to adjust the microphone preamp gain settings and phantom power states for the corresponding inputs.

5.1.3 – Dante™ TX Channel Status

This text field reports the number of active Dante™ receive devices for the corresponding transmitter channel. If no devices are subscribed to the transmitter channel the text field will report “None”.

*Note: This is a read-only field and any channel routing configuration must be performed within Dante™ Controller.
5.2 – unDIO2X2 Outputs

5.2.1 – Dante™ RX Channel Name
This text field reports the Dante™ receive channel name shown on the Dante™ network for corresponding analog output channel.

*Note: This field is non-editable. To edit the channel names, use the device list view control or use Dante™ Controller.

5.2.2 – Gain Control
The Gain Control section allows the user to adjust the line output gain setting for the corresponding analog output.

5.2.3 – RX Channel Assignment
This text field reports the currently assigned Dante™ transmit channel to the corresponding receive channel. If no channel is assigned, the text field will report "None".

*Note: This field is non-editable. To edit the channel names, use the device list view control or use Dante™ Controller.
6 – unDIO2X2+ Configuration

The configuration form for the unDIO2x2+ is organized into the following key sections:

- Inputs
- Outputs

*Note: Any changes made to device settings will only persist until power is cycled on the device. To retain the settings, they must be stored to Preset 0 using the “Save Presets” feature within unIFY Control Panel.

6.1 – unDIO2X2+ Inputs

6.1.1 – Dante™ TX Channel Name
This text field reports the Dante™ transmit channel name shown on the Dante™ network for corresponding analog input channel.

*Note: This field is non-editable. To edit the channel names, use the device list view control or use Dante™ Controller.

6.1.2 – Preamp Control
The preamp control section allows the user to adjust the microphone preamp gain settings, enable a -12dB pad and set the phantom power state for the corresponding inputs. Gain settings available on the gain control are 0dB, +15dB, +30dB and +45dB. The “Pad” option can be applied to any gain level and applies an attenuation of 12dB to the audio signal.

6.1.3 – Dante™ TX Channel Status
This text field reports the number of active Dante™ receive devices for the corresponding transmitter channel. If no devices are subscribed to the transmitter channel the text field will report “None”.

*Note: This is a read-only field and any channel routing configuration must be performed within Dante™ Controller.
6.2 – unDIO2X2+ Outputs

6.2.1 – Dante™ RX Channel Name
This text field reports the Dante™ receive channel name shown on the Dante™ network for corresponding analog output channel.

*Note: This field is non-editable. To edit the channel names, use the device list view control or use Dante™ Controller.

6.2.2 – Volume Control
The volume control allows the user to adjust the audio level of the corresponding analog output. Volume settings are between 0 and -60dB.

*Note: The volume control does not apply any gain to the output signal. It is only an attenuation only control.

6.2.3 – Mute Control
The mute control allows the user to mute/unmute the corresponding analog output.

6.2.4 – RX Channel Assignment
This text field reports the currently assigned Dante™ transmit channel to the corresponding receive channel. If no channel is assigned, the text field will report "None".

*Note: This field is non-editable. To edit the channel names, use the device list view control or use Dante™ Controller.
7 - unDX2IO Configuration

The configuration software for the unDX2IO is organized into the following key sections:

- Inputs
- Outputs

*Note: Any changes made to device settings will only persist until power is cycled on the device. To retain the settings, they must be stored to Preset 0 using the “Save Presets” feature within unIFY Control Panel.

7.1 - unDX2IO Inputs

7.1.1 - Dante™ TX Channel Name
This text field reports the Dante™ transmit channel name shown on the Dante™ network for corresponding analog input channel.

*Note: This field is non-editable. To edit the channel names, use the device list view control or use Dante™ Controller.

7.1.2 - Preamp Control
The Preamp Control section allows the user to adjust the microphone preamp gain settings and phantom power states for the corresponding inputs.

7.1.3 - Dante™ TX Channel Status
This text field reports the number of active Dante™ receive devices for the corresponding transmitter channel. If no devices are subscribed to the transmitter channel the text field will report “None”.

*Note: This field is non-editable. To edit the channel names, use the device list view control or use Dante™ Controller.
7.2 – unDX2IO Outputs

7.2.1 – Dante™ RX Channel Name
This text field reports the Dante™ receive channel name shown on the Dante™ network for corresponding analog output channel.

*Note: This field is non-editable. To edit the channel names, use the device list view control or use Dante™ Controller.

7.2.2 – RX Channel Assignment
This text field reports the currently assigned Dante™ transmit channel to the corresponding receive channel. If no channel is assigned, the text field will report "None".

*Note: This field is non-editable. To edit the channel names, use the device list view control or use Dante™ Controller.
8 - unDX2IO+ Configuration

The configuration software for the unDX2IO+ is organized into the following key sections:

- Inputs
- Outputs

Note: Any changes made to device settings will only persist until power is cycled on the device. To retain the settings, they must be stored to Preset 0 using the “Save Presets” feature within unIFY Control Panel.
8.1 – unDX2IO+ Inputs

8.1.1 – Dante™ TX Channel Name
This text field reports the Dante™ transmit channel name shown on the Dante™ network for corresponding analog input channel.

*Note: This field is non-editable. To edit the channel names, use the device list view control or use Dante™ Controller.

8.1.2 – Preamp Controls (Inputs 1 & 2 only)
The Preamp Control section allows the user to adjust the microphone preamp gain settings and phantom power states for the corresponding XLR inputs.

8.1.3 – Pad Controls (Inputs 3 & 4 only)
The Pad Control section allows the user to adjust the preamp gain settings for the corresponding Phoenix connector inputs. Each input can be set to either a “Pro” or a “Consumer” setting depending on the expected input level.

8.1.4 – Dante™ TX Channel Status
This text field reports the number of active Dante™ receive devices for the corresponding transmitter channel. If no devices are subscribed to the transmitter channel the text field will report “None”.

*Note: This field is non-editable. To edit the channel names, use the device list view control or use Dante™ Controller.
8.2 – unDX2IO+ Outputs

8.2.1 – Dante™ RX Channel Name
This text field reports the Dante™ receive channel name shown on the Dante™ network for corresponding analog output channel.

*Note: This field is non-editable. To edit the channel names, use the device list view control or use Dante™ Controller.

8.2.2 – Volume Control
The volume control allows the user to adjust the audio level of the corresponding analog output. Volume settings are between 0 and -60dB.

*Note: The volume control goes not apply any gain to the output signal. It is only an attenuation only control.

8.2.3 – Mute Control
The mute control allows the user to mute/unmute the corresponding analog output.

8.2.4 – RX Channel Assignment
This text field reports the currently assigned Dante™ transmit channel to the corresponding receive channel. If no channel is assigned, the text field will report “None”.

*Note: This field is non-editable. To edit the channel names, use the device list view control or use Dante™ Controller.
9 – unD3IO Configuration

The configuration software for the unD3IO is organized into the following key sections:

- Inputs
- Outputs

*Note: Any changes made to device settings will only persist until power is cycled on the device. To retain the settings, they must be stored to Preset 0 using the "Save Presets" feature within unIFY Control Panel.

9.1 – unD3IO Inputs

9.1.1 – Dante™ TX Channel Name
This text field reports the Dante™ transmit channel name shown on the Dante™ network for corresponding analog input channel.

*Note: This field is non-editable. To edit the channel names, use the device list view control or use Dante™ Controller.

9.1.2 – Preamp Control
The Preamp Control section allows the user to adjust the microphone preamp gain settings and phantom power states for the corresponding inputs.

9.1.3 – Input Select Control
*Note: The unD3IO has two Dante™ transmit channels. The first is connected to the XLR input. The second is a mono sum of the selected stereo line level input(s).

The unD3IO features an input selection option for the line level analog inputs routed to the second Dante™ transmitter channel. Using option "A" selects the mono mix of the two RCA inputs. Using option "B" selects the mono mix of the two stereo jack inputs and using option "A+B" selects options A and B mixed together.

9.1.4 – Dante™ TX Channel Status
This text field reports the number of active Dante™ receive devices for the corresponding transmitter channel. If no devices are subscribed to the transmitter channel the text field will report "None".

*Note: This field is non-editable. To edit the channel names, use the device list view control or use Dante™ Controller.
9.2 – unD3IO Outputs

9.2.1 – Dante™ RX Channel Name
This text field reports the Dante™ receive channel name shown on the Dante™ network for corresponding analog output channel.

*Note: This field is non-editable. To edit the channel names, use the device list view control or use Dante™ Controller.

9.2.2 – RX Channel Assignment
This text field reports the currently assigned Dante™ transmit channel to the corresponding receive channel. If no channel is assigned, the text field will report “None”.

*Note: This field is non-editable. To edit the channel names, use the device list view control or use Dante™ Controller.
10 – unD6IO Configuration

The configuration software for the unD6IO is organized into the following key sections:

- Inputs
- Outputs

*Note: Any changes made to device settings will only persist until power is cycled on the device. To retain the settings, they must be stored to Preset 0 using the “Save Presets” feature within unIFY Control Panel.
10.1 – unD6IO Inputs

10.1.1 – Dante™ TX Channel Name
This text field reports the Dante™ transmit channel name shown on the Dante™ network for corresponding analog input channel.

*Note: This field is non-editable. To edit the channel names, use the device list view control or use Dante™ Controller.

10.1.2 – Preamp Control
The Preamp Control section allows the user to adjust the microphone preamp gain settings and phantom power states for the corresponding inputs.

10.1.3 – Input Select Control
The unD6IO features an input selection option for the line level analog inputs routed to Dante™ transmitter channels 3 and 4. To select the active input, click on the desired radio button in the Input Selection control.

The selectable options are:
- Input A (RCA Inputs)
- Input B (3.5mm TRS input)
- A+B (Mono sum of both inputs A and B)

10.1.4 – Dante™ TX Channel Status
This text field reports the number of active Dante™ receive devices for the corresponding transmitter channel. If no devices are subscribed to the transmitter channel the text field will report “None”.

*Note: This field is non-editable. To edit the channel names, use the device list view control or use Dante™ Controller.
10.2 – unD6IO Outputs

10.2.1 – Dante™ RX Channel Name
This text field reports the Dante™ receive channel name shown on the Dante™ network for corresponding analog output channel.

*Note: This field is non-editable. To edit the channel names, use the device list view control or use Dante™ Controller.

10.2.2 – Output Volume/Mute Control
The unD6IO features volume and mute controls on the outputs. To adjust the output volume, drag the slider controls or directly enter the desired volume setting in the volume text box. The valid volume range is -60dB to 0dB in 1dB steps.

To mute the outputs, click on the Mute checkbox.

10.2.3 – RX Channel Assignment
This text field reports the currently assigned Dante™ transmit channel to the corresponding receive channel. If no channel is assigned, the text field will report "None".

*Note: This field is non-editable. To edit the channel names, use the device list view control or use Dante™ Controller.
11 - unD6IO-BT Configuration

The configuration software for the unD6IO-BT is organized into the following key sections:

- Inputs
- Outputs

*Note: Any changes made to device settings will only persist until power is cycled on the device. To retain the settings, they must be stored to Preset 0 using the “Save Presets” feature within unIFY Control Panel.
11.1 – unD6IO-BT Inputs

11.1.1 – Dante™ TX Channel Name
This text field reports the Dante™ transmit channel name shown on the Dante™ network for corresponding Bluetooth® receiver input channels.

*Note: This field is non-editable. To edit the channel names, use the device list view control or use Dante™ Controller.

11.1.2 – Status
This field reports the Bluetooth® interface status. The possible states are “Idle”, “Discoverable” and “Connected”. Changes to the device’s Bluetooth® related parameters are disabled in all states except the “Idle” state.

11.1.3 – Connected Device
This field reports the name of the connected Bluetooth® device.

11.1.4 – Activate Pairing
This function activates pairing mode on the device similar to pressing the front panel button.

11.1.5 – Disable Pairing Button
This checkbox allows the installer to lock out the front panel pairing functionality for applications that require restricted access to the audio system.

11.1.6 – Close Connection
This function remotely closes the active Bluetooth® connection and function is only active when the Bluetooth® status is “Connected”.

11.1.7 – Clear Pairings
This function clears the actively paired devices in the pairing list. This is generally not required but may help in resolving any connectivity issues that users experience.

11.1.8 – Bluetooth® Friendly Name
The Name field allows the installer to configure an appropriate Bluetooth® friendly name that will be visible to users on their Bluetooth® equipped devices when attempting to connect. This allows for multiple unD6IO-BT devices to be placed in close proximity and still provide clarity to users trying to connect to a particular unD6IO-BT device and audio system.
11.1.9 – Bluetooth® Connect Modes

11.1.9.1 – Manual Mode:
This usage model is intended for applications where casual users of a public venue (sports bar, spa, stadium luxury box, fitness center) have access to connect their devices to the audio system but headaches are minimized by eliminating automatic reconnect and pairing history features.

In this mode, users connect their Bluetooth® audio enabled smart device by simply pressing the front panel “PAIR” button. The blue Bluetooth® status LED will begin flashing to indicate that the unD6io-BT is now visible to other Bluetooth® devices and accepting pairings. This pairing period lasts 30 seconds after which the status LED will stop flashing and turn off and the unD6io-BT will disable its Bluetooth® interface.

*Note: The default friendly name visible to other devices is “unD6IO-BT”. This name can be customized by the installer using the unIFY Control Panel software (v2.1 or greater).

If a successful pairing is made during the pairing period, the status LED will stop flashing and turn constantly on.

To disconnect a Bluetooth device from the unD6IO-BT, press and hold the PAIR button for 5 seconds and then release it. The status LED will turn off, and the connection will be reset. Another device may now be connected by repeating the pairing process.

11.1.9.2 – Reconnect Mode
In this mode, a previously paired device will be permitted to reconnect when in range of the unD6IO-BT without requiring the front panel button to be pressed.

*Note: This mode applies to both A2DP and HFP profiles.

11.1.9.3 – Exclusive Mode
In this mode, the exclusively paired device will be permitted to reconnect when in range of the unD6IO-BT without requiring the front panel button to be pressed but is limited to a single device and is intended for restricted/personal use.

Any other pairing/connect requests beyond the first paired device is rejected.

*Note: This mode applies to both A2DP and HFP profiles.

11.1.10 – Audio Bridging

11.1.10.1 – Media Bridging (only)
In this mode (A2DP), users may stream audio from media applications on the paired device. The user is protected from errant streaming of phone audio over Bluetooth® link.

11.1.10.2 – Call Bridging (only)
In this mode (HFP), users may stream incoming/outgoing calls from the paired device using the system integrated inputs and outputs. The user is protected from errant streaming of media audio over Bluetooth® link.

11.1.10.3 – Call & Media Bridging
In this mode, both profiles are available giving users the ability to control access of content (call/media) to the system from the paired device.

11.1.11 – Dante™ TX Channel Name
This text field reports the Dante™ transmit channel name shown on the Dante™ network for corresponding analog input channel.

*Note: This field is non-editable. To edit the channel names, use the device list view control or use Dante™ Controller.
11.1.12 – Input Select Control
The unD6IO-BT features an input selection option for the line level analog inputs routed to Dante™ transmitter channels 3 and 4. To select the active input, click on the desired radio button in the Input Selection control.

The selectable options are:
- Input A (RCA Input)
- Input B (3.5mm TRS input)
- A+B (Mono sum of both inputs A and B)

11.1.13 – Dante™ TX Channel Status
This text field reports the number of active Dante™ receive devices for the corresponding transmitter channel. If no devices are subscribed to the transmitter channel the text field will report “None”.

*Note: This field is non-editable. To edit the channel names, use the device list view control or use Dante™ Controller.

11.2 – unD6IO-BT Outputs

11.2.1 – Dante™ RX Channel Name
This text field reports the Dante™ receive channel name shown on the Dante™ network for corresponding analog output channel.

*Note: This field is non-editable. To edit the channel names, use the device list view control or use Dante™ Controller.

11.2.2 – Output Volume/Mute Control
The unD6IO features volume and mute controls on the outputs. To adjust the output volume, drag the slider controls or directly enter the desired volume setting in the volume text box. The valid volume range is -60dB to 0dB in 1dB steps.

To mute the outputs, click on the Mute checkbox.

11.2.3 – RX Channel Assignment
This text field reports the currently assigned Dante™ transmit channel to the corresponding receive channel. If no channel is assigned, the text field will report “None”.

*Note: This field is non-editable. To edit the channel names, use the device list view control or use Dante™ Controller.
11.3 – AVRCP Control

Many installed AV systems in both residential and commercial markets feature control products with customizable user interfaces. With a connected Bluetooth audio device as a source, it is desirable to have access to the device information and source content (artist / album) for use on the control system UI. Additionally, the end user of the system may control the source from any control panel that has this feature useful if the device is left somewhere to charge and is out of reach to simply change songs or stop the audio playback.

Control access will be available for the following AVRC pass through commands:

a) Play
b) Pause
c) Stop
d) Next Track
e) Previous Track
f) Volume Up
g) Volume Down
h) Mute

Note: Some devices, such as iOS devices do not support AVRCP pass though volume control. In order to provide broad compatibility it is recommended that volume control be implemented by adjusting the unD6iO-BT Bluetooth® hardware rather than the remotely connected device.
12 – unDX4I Configuration

The configuration software for the unDX4I is organized into the following key sections:

- Inputs
- Outputs

*Note: Any changes made to device settings will only persist until power is cycled on the device. To retain the settings, they must be stored to Preset 0 using the “Save Presets” feature within unIFY Control Panel.
12.1 – unDX4I Inputs

12.1.1 – Dante™ TX Channel Name
This text field reports the Dante™ transmit channel name shown on the Dante™ network for corresponding analog input channel.

*Note: This field is non-editable. To edit the channel names, use the device list view control or use Dante™ Controller.

12.1.2 – Preamp Control
The Preamp Control section allows the user to adjust the microphone preamp gain settings and phantom power states for the corresponding inputs.

12.1.3 – Dante™ TX Channel Status
This text field reports the number of active Dante™ receive devices for the corresponding transmitter channel. If no devices are subscribed to the transmitter channel the text field will report "None".

*Note: This field is non-editable. To edit the channel names, use the device list view control or use Dante™ Controller.
12.2 – unDX4I Outputs

12.2.1 – Dante™ RX Channel Name
This text field reports the Dante™ receive channel name shown on the Dante™ network for corresponding analog output channel.

*Note: This field is non-editable. To edit the channel names, use the device list view control or use Dante™ Controller.

12.2.2 – Output Volume/Mute Control
The unDX4I features volume and mute controls on the outputs. To adjust the output volume, drag the slider controls or directly enter the desired volume setting in the volume text box. The valid volume range is -60dB to 0dB in 1dB steps.

To mute the outputs, click on the Mute checkbox.

12.2.3 – RX Channel Assignment
This text field reports the currently assigned Dante™ transmit channel to the corresponding receive channel. If no channel is assigned, the text field will report “None”.

*Note: This field is non-editable. To edit the channel names, use the device list view control or use Dante™ Controller.
13 – unD4I Configuration

The configuration software for the unD4I is organized into the following key sections:

- Inputs

*Note: Any changes made to device settings will only persist until power is cycled on the device. To retain the settings, they must be stored to Preset 0 using the “Save Presets” feature within unIFY Control Panel.

13.1 – unD4I Inputs

13.1.1 – Dante™ TX Channel Name

This text field reports the Dante™ transmit channel name shown on the Dante™ network for corresponding analog input channel.

*Note: This field is non-editable. To edit the channel names, use the device list view control or use Dante™ Controller.

13.1.2 – Preamp Control

The Preamp Control section allows the user to adjust the microphone preamp gain settings and phantom power states for the corresponding inputs.

13.1.3 – Dante™ TX Channel Status

This text field reports the number of active Dante™ receive devices for the corresponding transmitter channel. If no devices are subscribed to the transmitter channel the text field will report “None”.

*Note: This field is non-editable. To edit the channel names, use the device list view control or use Dante™ Controller.
14 – unD4I-L Configuration

The configuration software for the unD4I-L is organized into the following key sections:

- Audio Config
- Logic Monitor
- Event Messages/Modes
- Logic – Network Config

*Note: Any changes made to device settings will only persist until power is cycled on the device. To retain the settings, they must be stored to Preset 0 using the “Save Presets” feature within unIFY Control Panel.
14.1 – unD4I-L Audio Config

14.1.1 – Dante™ TX Channel Name
This text field reports the Dante™ transmit channel name shown on the Dante™ network for corresponding analog input channel.

*Note: This field is non-editable. To edit the channel names, use the device list view control or use Dante™ Controller.

14.1.2 – Preamp Control
The Preamp Control section allows the user to adjust the microphone preamp gain settings and phantom power states for the corresponding inputs.

14.1.3 – Dante™ TX Channel Status
This text field reports the number of active Dante™ receive devices for the corresponding transmitter channel. If no devices are subscribed to the transmitter channel the text field will report "None".

*Note: This field is non-editable. To edit the channel names, use the device list view control or use Dante™ Controller.
14.2 – unD4I-L Logic Monitor

14.2.1 – Logic Inputs
The Logic Monitor tab provides indicators of the active logic input states. Each logic input shows a green LED if the logic input is active (high). The corresponding analog voltage level is also shown in the “Level” text field. If the logic input is connected to a digital device such as a microphone PTT switch the state LED will turn off when the contact is closed. For continuous voltage controls such as a potentiometer connected to the logic inputs, the Level field will indicate the current voltage read by the ADC on that input channel.

14.2.2 – Logic Outputs
This section shows the active state of the corresponding logic output with a state LED for each output. The state LED will show active green when the output is on.

A simple checkbox control is available for testing the logic output. Check the box to assert the logic output, uncheck to clear the output. In normal use, the output control is set by network control received by a third party control device such as a control system or audio DSP.

The “Link To” controls, allow the logic output of the unD4I-L to be logically linked to the unD4I-L’s corresponding logic input. When the link is enabled, if the unD4I-L output will mirror the state of the corresponding input.
14.3 – unD4I-L Event Messages/Modes

The Event Messages/Modes tab allows the installer to configure the logic event messages and event triggering modes for each of the logic inputs.

Each input supports the following modes:
- Digital
- Analog Triggered
- Analog Timed

In all modes the default message style is ASCII formatting. In the Digital mode, by checking the Binary Messages checkbox, the message formatting is changed to send hexadecimal bytes. To input the Digital mode binary messages, enter the event messages as hexadecimal bytes separated by spaces.

14.3.1 – Analog Triggered Mode

In analog triggered mode, the unD4I-L takes the maximum analog range for an input (0-4095) and subdivides it into a number of approximately equal sized steps determined by the “Analog Steps” field. There can be as few as 2 steps up to a maximum of 256. Using the analog voltage reading on the input, the unD4I-L determines what step the input is currently on and whether the current step has changed from the last time the input value was read. If it determines the step is now different, an event message is generated containing the current step level. The configurable step size allows the event messages to be tailored for the device that will be interpreting the control. Additionally it helps minimize the number of event message packets that are sent by the unD4I-L as the analog input voltage changes.

For example, take the message setup as configured in the example above. The “Analog Steps” setting is at 100 so each step size equate to 4096 / 100 = 40.96. This is rounded up to 41. If the volume starts out at a value of 150, that is in step 3 as it’s between the values 123 (41 * 3) and 164 (41 * 4). While the voltage remains in that range, nothing happens. However, if the value were to increase to above 164 to say 170, it is now in the next step level, and a UDP event message will be sent to port 49494 at IP address 169.254.0.100 with contents of “VOLUME 4<CR>”. On the other hand, if the input voltage were to decrease to 100, that is now below the previous step value of 123 (41 * 3), it is now in step 2 and that is now a different step level and a UDP event message will be sent to port 49494 at IP address 169.254.0.100 with contents of “VOLUME 2<CR>” A typical use case for this mode would be a graduated volume control.
14.3.2 – Analog Timed Mode
In analog timed mode, the event messages will be sent at a rate configured in the “Analog Time” field. The acceptable range for the “Analog Time” field is 0.1 to 10 seconds (100ms to 10,000ms). The raw value of the 12-bit A/D converter is appended to each event message.

As an example, the event message configured above would result in a UDP event message being sent to port 49494 of IP address 169.254.0.100 every tenth of a second where the data payload of the message would range from VOLUME 0<CR> to 4095<CR> depending on the current input level.

14.3.3 – Digital Mode
The digital mode allows for triggering an event message when the digital state of the input changes. The valid triggering options are rising, falling, or both. By selecting the triggering mode, once the unD4I-L detects a logic state change an event message is sent based on the selecting triggering mode. Subsequently, selection of the trigger type will enable the valid event message string fields.

As an example, the event message configured in the example above would result in an event message to be sent to UDP or TCP/IP port 49494 of IP address 169.254.0.200 every time Input 1 changes its digital state. If the state changes from low to high, a “MUTE ON<CR>” message is sent. If the state changes from high to low, a MUTE OFF<CR> message is sent.

An application example for this feature is the use of the unD4I-L to communicate the mute state of a connected microphone’s switch setting to a DSP or control system that exists on the network.

14.3.4 – Event Messages
This section allows the installer to specify the event message data that is sent when a logic event is detected on the corresponding unD4I-L logic inputs. The message fields themselves become enabled depending on the mode selected.

When the “Binary Messages” checkbox is left unchecked, the message data uses the direct ASCII characters as the message data. Checking the “Binary Messages” box converts the fields to use hexadecimal bytes instead. In this mode, each data byte in the message is represented by a two character hexadecimal value separated from each other by a space.

For example, the message data representation for the message 0xDEADBEEF would be “DE AD BE EF”.
14.4 – Logic-Network Config

General setup and communication with the unD4I-L is done through the main Dante™ network interface. However, event messages are transmitted through a completely separate Logic network interface. Like anything connected to an Ethernet network, the logic network interface requires an IP address to operate though generally speaking, the IP address used for the logic interface is unimportant to the integration of the unD4I-L into AV systems as it is only ever used to transmit logic event messages.

Note: While the Dante™ and Logic network interfaces will both require IP address to operate, they are both accessed through the same physical network connection using a single Ethernet cable. The unD4I-L does not have a separate control network port that can be wired separately.

Like the Dante™ interface, the logic interface has customizable IP address settings. By default, the unD4I-L’s logic event interface is set to obtain a dynamic IP address. This will use DHCP if a server is present on the network otherwise it will set itself a Local Link address instead (169.254.x.y).

If there is a need to assign a static IP address to the logic control interface, check the “Static IP Address” checkbox and then enter a valid IP address, netmask and gateway. Keep in mind that this interface is used to send the event messages from the unD4I-L to other control devices or DSP devices so these destination devices must be on an IP subnet and address range that can be reached by the unD4I-L. It must also be a unique address that is not used elsewhere on the network.

If the IP address mode is changed, once the “Apply” button is pressed the device will reset itself and will disconnect from the unIFY application. This is expected and required behavior of the unD4I-L, so keep this in mind when applying the settings of the device to ensure there is no unexpected loss of data.

In addition to the IP address setup, the logic event interface can be customized to send control packets using either TCP or UDP protocols. This is selected by clicking on the desired radio button in the “Event Message Send Method” section.

Note: The logic event network interface configuration is a global setting and is not stored as preset data.
15 – unDNEMO Configuration

The configuration software for the unDNEMO is organized into the following key sections:
- Channel Configuration
- Device Configuration
15.1 – Channel Configuration
The unDNEMO requires the installer or end user to first select the desired Dante™ audio channels for monitoring on the active Dante™ network. This task is easily performed using the Channel Configuration section of the software.

The channel list control is used to specify which Dante™ channel is assigned to each of the 64 available channel slots available on the unDNEMO.

![Channel Configuration](image)

The Channel Configuration list consists of three columns:
- **Device Name**
- **Device TX Channel**
- **Display Name**

The channel configuration can be done manually by entering the exact Dante™ device name (case sensitive) and channel name into the corresponding fields. However, it is recommended to take advantage of the built-in drag and drop functionality from the device list to assist in creating the customized channel list. This feature not only minimizes the configuration time needed to setup a device, but it also minimizes errors in assigning device and channel names by removing any chance for misspellings.

Any device that contains Dante™ transmit channels (denoted by a TX in the expanded channel view in the device list), can be assigned by either dragging a single channel label from the device list onto the desired channel list location or by dragging the name of the device in the channel list. If the device name is selected and dragged, then all available channel names will automatically be populated into the channel configuration list.

When channels are applied by the drag and drop feature, the display name is automatically copied over as the Dante™ channel name. If it’s desirable for the end user to be presented with a name that differs from the Dante™ channel name on the network then the name may be overridden by entering the desired display name, up to 32 characters in length.

In addition to the channel names, each row of the channel list features an enable checkbox. In order for the channel to be enabled and included in the channel list, this checkbox must be checked. Any channels with the check box not checked will be ignored by the user interface of the unDNEMO.

Once all channel configuration settings have been set up, click the “Apply Channel Configuration” button to send the settings to the unDNEMO.

Note: If you are setting up a large number of unDNEMO devices, it is recommended that you also save the configuration as a preset file. Once saved as a file, this preset can then be applied to multiple unDNEMO devices on the Dante™ network using the Multiple Device Preset Load functional located under the Tools menu.

15.2 – Stereo Channel Configuration
In the Mode Setup controls, the user may select “Enable Stereo” to configure the unDNEMO in stereo monitoring mode. When this checkbox is selected, the channel list will be altered to show 32 channel pairs (1-L, 1-R, 2-L, 2-R, etc). The “Display name” field is taken from the name assign to the left hand channel while the right hand channel name is disabled. The same configuration method is used for stereo channel setup as is done for the mono channel monitoring. When the user cycles through the channel list, the audio is output to the corresponding left or right channel when monitoring with headphones. The internal speaker is a mono sum of the two channels.
15.3 – Device Configuration

15.3.1 – Button Backlight Brightness
The unDNEMO features a backlit button keypad for added visibility in low visibility lighting conditions. The backlight brightness is adjustable from a scale of 1 (minimum) to 10 (maximum) using the slider controls.

15.3.2 – Display Brightness
The unDNEMO features a high visibility OLED display with adjustable brightness control. The brightness is adjustable from a scale of 1 (minimum) to 10 (maximum) using the slider controls.

15.3.3 – Mode Setup
The Mode Setup configuration section allows the installer to customize the capabilities of the unDNEMO for an optimized end user experience.

15.3.3.1 – All Input Mode
The All Input Mode mixes input from the Dante™ network, USB audio input and line input sources simultaneously to provide an all in one audio stream for applications requiring simultaneous monitoring from these multiple audio input sources.

15.3.3.2 – USB Mode
The USB Mode allows the unDNEMO to operate as a USB sound card for bidirectional computer based audio applications.

15.3.3.3 – Line Mode
The Line Mode allows the unDNEMO to operate as a local monitor for an audio device connected to the line input of the unDNEMO.

15.3.3.4 – Stereo
The Enable stereo function configures the unDNEMO to treat all channels in the monitoring list as stereo pairs.

15.3.3.5 – Dante™ TX Audio
The Dante™ TX audio functionality allows the unDNEMO to bridge audio from the unDNEMO to the Dante™ network as follows:
- Net Mode – Internal or External mic audio is transmit on unDNEMO Dante™ transmit channel 1.
- USB Mode – Audio playback from the connected computer audio source is bridged to the Dante™ audio network on transmit channels 1 (Left) and 2 (right).
- Line Mode – The analog input connected to the Line Input of the unDNEMO is bridged to Dante™ audio network on transmit channels 1 and 2.
- All Input Mode – No TX audio supported.

15.3.3.6 – Menu Mode User Access
The unDNEMO features a menu mode for viewing information about the device and limited configuration of device features.

15.3.3.7 – Display Timeout
The screen on the unDNEMO will suffer burn in if left displaying the same text for long periods so there is a programmable time period after which the screen will turn itself off. By default, the timeout is set to 5 minutes but this can be adjusted from 1 minute to 60 minutes.

Note: For all controls in the Device Configuration section, changes made in the software will be immediately reflected on the device.
16 – unDNEMO-BT Configuration

The configuration software for the unDNEMO-BT is organized into the following key sections:

- Channel Configuration
- Device Configuration
16.1 – Mono Channel Configuration

The unDNEMO-BT requires the installer or end user to first select the desired Dante™ audio channels for monitoring on the active Dante™ network. This task is easily performed using the Channel Configuration section of the software.

The channel list control is used to specify which Dante™ channel is assigned to each of the 64 available channel slots available on the unDNEMO.

The Channel Configuration list consists of three columns:
- Device Name
- Device TX Channel
- Display Name

The channel configuration can be done manually by entering the exact Dante™ device name (case sensitive) and channel name into the corresponding fields. However it is recommended to take advantage of the built in drag and drop functionality from the device list to assist in creating the customized channel list. This feature not only minimizes the configuration time needed to setup a device, but it also minimizes errors in assigning device and channel names by removing any chance for misspellings.

Any device that contains Dante™ transmit channels (denoted by a TX in the expanded channel view in the device list), can be assigned by either dragging a single channel label from the device list onto the desired channel list location or by dragging the name of the device in the channel list. If the device name is selected and dragged, then all available channel names will automatically be populated into the channel configuration list.

When channels are applied by the drag and drop feature, the display name is automatically copied over as the Dante™ channel name. If it’s desirable for the end user to be presented with a name that differs from the Dante™ channel name on the network then the name may overridden by entering the desired display name, up to 32 characters in length.

In addition to the channel names, each row of the channel list features an enable checkbox. In order for the channel to be enabled and included in the channel list, this checkbox must be checked. Any channels with the check box not checked will be ignored by the user interface of the unDNEMO-BT.

Once all channel configuration settings have been set up, click the “Apply Channel Configuration” button to send the settings to the unDNEMO-BT.

If you are setting up a large number of unDNEMO devices, it is recommended that you also save the configuration as a preset file. Once saved as a file, this preset can be applied to multiple unDNEMO devices on the Dante™ network using the Multiple Device Preset Load functional located under the Tools menu.

16.2 – Stereo Channel Configuration

In the Mode Setup controls, the user may select “Enable Stereo” to configure the unDNEMO in stereo monitoring mode. When this checkbox is selected, the channel list will be altered to show 32 channel pairs (1-L, 1-R, 2-L, 2-R, etc). The “Display name” field is taken from the name assign to the left hand channel while the right hand channel name is disabled. The same configuration method is used for stereo channel setup as is done for the mono channel monitoring. When the user cycles through the channel list, the audio is output to the corresponding left or right channel when monitoring with headphones. The internal speaker is a mono sum of the two channels.
16.3 – Device Configuration

16.3.1 – Button Backlight Brightness
The unDNEMO-BT features a backlight button keypad for added visibility in low visibility lighting conditions. The backlight brightness is adjustable from a scale of 1 (minimum) to 10 (maximum) using the slider controls.

16.3.2 – Display Brightness
The unDNEMO-BT features a high visibility OLED display with adjustable brightness control. The brightness is adjustable from a scale of 1 (minimum) to 10 (maximum) using the slider controls.

16.3.3 – Mode Setup
The Mode Setup configuration section allows the installer to customize the capabilities of the unDNEMO-BT for an optimized end user experience.

16.3.3.1 – All Input Mode
The all input mode mixes input from the Dante™ network, USB audio input and line input sources simultaneously to provide an all in one audio management interfaces for applications requiring simultaneous monitoring from these multiple audio input sources.

16.3.3.2 – USB Mode
The USB mode allows the unDNEMO-BT to operate as a USB sound card for bi-directional computer-based audio applications.

16.3.3.3 – Aux In Mode
The aux in mode allows the unDNEMO-BT to operate as a local monitor for an audio device connected to the line input or via Bluetooth®. The aux source is selected by the user on the front panel in the Aux source screen.

16.3.3.4 – Stereo
The “Enable Stereo” function configures the unDNEMO-BT to treat all channels in the monitoring list as stereo pairs.

16.3.3.5 – Dante™ TX Audio
The Dante™ TX audio functionality allows the unDNEMO-BT to bridge audio from the unDNEMO-BT to the Dante™ network as follows:
- Net Mode – Internal or External mic audio is transmit on unDNEMO-BT Dante™ transmit channel 1.
- USB Mode – Audio playback from the connected computer audio source is bridged to the Dante™ audio network on transmit channels 1 (Left) and 2 (right)
- Aux Mode – The analog input connected to the Line Input of the unDNEMO-BT is bridged to Dante™ audio network on transmit channels 1 and 2.
- All Input Mode – No TX audio supported.

The Dante™ TX audio functionality will be configured based upon the installer setup of this option.

16.3.3.6 – Menu Mode User Access
The unDNEMO-BT features a menu mode for viewing information about the device and limited configuration of device features. The menu mode functionality will be configured based upon the installer setup of this option.

16.3.3.7 – Enable Front Panel Lock (Remote)
This function is useful for applications that wish to restrict the end user from access to all front panel functions except for volume and mute controls. This functionality is suitable for applications that are managed by a 3rd party control system via the unDNEMO-BT 3rd party network control protocol.

Note: For all controls in the Device Configuration section, changes made in the software will be immediately reflected on the device.
16.4 – Bluetooth® Setup

The Bluetooth® features of the unDNEMO-BT can be configured by the installer in the following modes.

- Headphone/Headset – Enables headphone or headset wireless monitoring functionality.
- Bluetooth® Bridge – Transmits received Bluetooth® audio via Dante™ outputs.
- Disable Bluetooth® – Disables all Bluetooth® functionality from the unit.

16.4.1 – Clear Pairings

This function clears the pairing list of the unDNEMO-BT. This function may be useful if a user is having difficulty pairing to the device.

16.4.2 – Bluetooth® Reset

This function will reset the Bluetooth® interface in the event an errant Bluetooth® device is paired that causes a device failure in the pairing / connect process.
17 – unBT2A Configuration

The unBT2A device configuration window is accessed under the Tools->unBT2A Configuration menu within unIFY Control Panel.

The configuration software for the unBT2A is organized into the following key sections:

- Bluetooth® Configuration

17.1 – Control Port Selection

The unBT2A utilizes a virtual COM port for communication with the unBT2A over the USB connection. To locate the correct COM port, open the Device Manager in Windows, navigate to the Ports entry in the device list. Expand the Ports entry and look for the Attero Tech unBT2A. Note the COM port listed for this device and select the appropriate COM port from the drop down list in unIFY Control Panel. Press Connect to initiate a connection to the selected device.
17.2 – Bluetooth® Configuration

17.2.1 – Bluetooth® Friendly Name
The Name field allows the installer to configure an appropriate Bluetooth® friendly name that will be visible to users on their Bluetooth® equipped devices when attempting to connect. This allows for multiple unBT2A devices to be placed in close proximity and still provide clarity to users trying to connect to a particular unBT2A device and audio system.

17.2.2 – Status
This field reports the Bluetooth® interface status. The possible states are Idle, Discoverable and Connected. Changes to the device’s Bluetooth® related parameters are disabled in all states except the “Idle” state.

17.2.3 – Disable Pairing Button
This checkbox allows the installer to lock out the front panel pairing functionality for applications that require restricted access to the audio system.

17.2.4 – Audio Output
This option allows the installer to configure a mono or stereo output from the unBT2A. The mono output mode is useful for systems that utilize mono playback systems and wish to maximize the input channel capacity of the system. The mono output signal is the sum of both channels at 50% volume sent to each output. Stereo output mode sends the left/right channels separately to each output at 100% volume.

17.2.5 – Nominal Output Level
This option allows the installer to configure the nominal output level for proper interfacing of levels to connected audio equipment (mixers, DSPs, audio matrices etc.). The options are +4dBu (+20dBu max - Pro) or -10dV (+10dBV max - Consumer).

17.2.6 – Activate Pairing Mode
This function remotely activates the pairing mode for debugging or initial system commissioning and testing.

17.2.7 – Close Connection
This function remotely closes the active Bluetooth® connection and is only active when the Bluetooth® status is “Connected”.

17.2.8 – Clear Pairings
This function clears the actively paired devices in the pairing list. This is generally not required but may help in resolving any connectivity issues that users experience.
18 – Clockaudio CDT100 Configuration

The configuration software for the Clockaudio CDT-100 is organized into the following key sections:

- MIC Inputs
- LED / ARM-C Configuration

*Note: Any changes made to device settings will only persist until power is cycled on the device. To retain the settings, they must be stored to Preset 0 using the “Save Presets” feature within unIFY Control Panel.

18.1 – CDT100 MIC Inputs

18.1.1 – Dante™ TX Channel Name
This text field reports the Dante™ transmit channel name shown on the Dante™ network for corresponding analog input channel.

*Note: This field is non-editable. To edit the channel names, use the device list view control or use Dante™ Controller.

18.1.2 – Phantom Power Control
The phantom power control section allows the user to adjust the phantom power state for the corresponding inputs.

18.1.3 – Dante™ TX Channel Status
This text field reports the number of active Dante™ receive devices for the corresponding transmitter channel. If no devices are subscribed to the transmitter channel the text field will report “None”.

*Note: This field is non-editable. To edit the channel names, use the device list view control or use Dante™ Controller.
18.2 – CDT100 LED / ARM-C Configuration

18.2.1 – Asynchronous IP Address and Port
Logic input state changes can be asynchronously transmitted over the network. The asynchronous IP and port set the location these messages are sent to. Asynchronous messages can be switched off by sending the IP address of 0.0.0.0.

18.2.2 – ARM-C / Switch ID Controls
The ARM-C control allows the user to manually activate/deactivate the ARM-C output. Simply check the box to activate the output or un-check the box to de-activate the output. The “Switch ID” field indicates the current setting of the address switch on the front of the unit. This field is not editable by the application and is for monitoring purposes only.

18.2.3 – CH32 Controls
A green and a red indicator show the state of the state of the LED’s on each channels CH32. The state of every LED can be manually set from the application by clicking on the checkbox next to the appropriate LED.

*Note: The state of the status indicators is taken from the connected device in real time so when the state is changed, either manually or by a 3rd party system, there may be a short delay before the application status catches up.

The switch status shows the state of the CH-32 switch and whether it is active or not.

*Note: There may be a short delay between the state of the input changing and the application displaying the new state.

The brightness fields can be used to alter the brightness of the CH-32’s LED’s. Brightness can be adjusted in 10% increments from 10% up to 100%. There are separate controls for both the green and red LED’s on each channel.
19 – Clockaudio CDT100 Mk II Configuration

The configuration software for the Clockaudio CDT-100 is organized into the following key sections:

- MIC Inputs
- LED / ARM-C Configuration

*Note: Any changes made to device settings will only persist until power is cycled on the device. To retain the settings, they must be stored to Preset 0 using the “Save Presets” feature within unIFY Control Panel.

19.1 – CDT100 Mk II MIC Inputs

19.1.1 – Dante™ TX Channel Name
This text field reports the Dante™ transmit channel name shown on the Dante™ network for corresponding analog input channel.

*Note: This field is non-editable. To edit the channel names, use the device list view control or use Dante™ Controller.

19.1.2 – Phantom Power Control
The phantom power control section allows the user to adjust the phantom power state for the corresponding inputs.

19.1.3 – Dante™ TX Channel Status
This text field reports the number of active Dante™ receive devices for the corresponding transmitter channel. If no devices are subscribed to the transmitter channel the text field will report “None”.

*Note: This field is non-editable. To edit the channel names, use the device list view control or use Dante™ Controller.
19.2 - CDT100 Mk II LED / ARM-C Configuration

19.2.1 - Asynchronous IP Address and Port
Logic input state changes can be asynchronously transmitted over the network. The asynchronous IP and port set the location these messages are sent to. Asynchronous messages can be switched off by sending the IP address of 0.0.0.0.

19.2.2 - ARM-C / Switch ID Controls
The ARM-C control allows the user to manually activate/deactivate the ARM-C output. Simply check the box to activate the output or un-check the box to de-activate the output. The “Switch ID” field indicates the current setting of the address switch on the front of the unit. This field is not editable by the application and is for monitoring purposes only.

19.2.3 - TS-1 Controls
A red, a green, and a blue indicator show the state of the state of the LED’s on each channels TS. The state of every LED can be manually set from the application by clicking on the checkbox next to the appropriate LED.

The switch status shows the state of the three TS switches and whether they are active or not.

The RGB fields can be used to alter the brightness of the TS’s LED’s. Values can be adjusted from 0 to 255. There are separate controls for the green, red and blue LED’s on each channel.

*Note: The status indicators are read from the connected device in real time so when the state is changed, either manually or by a 3rd party system, there may be a short delay before the application status catches up.
20 – Clockaudio CDT3 Configuration

The configuration software for the Clockaudio CDT-100 is organized into the following key sections:
- MIC Inputs
- LED Configuration

20.1 – CDT3 MIC Inputs

20.1.1 – Dante™ TX Channel Name
This text field reports the Dante™ transmit channel name shown on the Dante™ network for corresponding analog input channel.

*Note: This field is non-editable. To edit the channel names, use the device list view control or use Dante™ Controller.

20.1.2 – Dante™ TX Channel Status
This text field reports the number of active Dante™ receive devices for the corresponding transmitter channel. If no devices are subscribed to the transmitter channel the text field will report “None”.

*Note: This field is non-editable. To edit the channel names, use the device list view control or use Dante™ Controller.
20.2 – CDT3 LED Configuration

20.2.1 – TS -1 Controls

A red, a green, and a blue indicator show the state of the state of the LED’s on the TS controlled to the CDT3. The state of every LED can be manually set from the application. Checking the checkbox next to the appropriate LED turn it on. The RGB fields can be used to alter the brightness of each LED. Values can be adjusted from 0 to 255. There are separate controls for the green, red and blue LED’s on each channel. Unchecking the checkbox turns that particular LED off regardless of the brightness setting.

The switch status shows the state of the TS switch and whether it is active or not.

*Note: The status indicators are read from the connected device in real time so when the state is changed, either manually or by a 3rd party system, there may be a short delay before the application status catches up.
21 – unHX2D Configuration

21.1 – HDMI Setup

The unHX2D allows HDMI audio sources to be de-embedded and re-embedded from/to the HDMI I/O on the device. The HDMI Setup controls all the following configuration and status monitoring.

21.1.1 – HDMI Status

A green indicator indicates a connected HDMI input source or HDMI output sink device.

A yellow indicator on the HDMI input status LED indicates a connected source, with HDCP disabled on the unHX2D input.

21.1.2 – HDCP Enable

The unHX2D allows HDCP to be disabled on the unHX2D HDMI input. This does not unencrypt copy protected content, but rather is used to signal to source devices such as Apple computers that the eventual sink device (monitor, projector) does not support HDCP.

Default = HDCP Enabled

21.1.3 – Force HPD On

HPD (Hot Plug Detect) is used in HDMI repeaters to signal the presence and removal of a connected sink to the original source device. In some cases, it is desirable to de-embed the HDMI audio content without a connected sink device. In this setup, the installer should force HPD on to ignore the lack of a connected sink device.

Default = HPD Force disabled
21.1.4 – EDID Management
The EDID setting for the unHX2D provides the source device an indication of the acceptable formats for use with the unHX2D. The settings are limited to advertise 2 channel PCM for artifact free audio de-embedding. The following settings are the possible options.

<table>
<thead>
<tr>
<th>EDID Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1080p / 2CH PCM (Default)</td>
</tr>
<tr>
<td>1080i / 2CH PCM</td>
</tr>
<tr>
<td>3D / 2CH PCM</td>
</tr>
<tr>
<td>4K / 2 CH PCM</td>
</tr>
<tr>
<td>Copy Through (Capabilities described by connected sink device)</td>
</tr>
</tbody>
</table>

It is recommended to use manual configuration and forcing of the EDID to 2 CH PCM modes where possible. Choosing the “Copy Through” EDID setting allows for the possibility of compressed multichannel content to be de-embedded, however the unHX2D cannot decode this content and will create considerable distortion and possibly damaging signal to downstream amplifiers/speakers receiving this errant audio content.

21.2 – Analog Input Setup
The unHX2D supports connectivity for 2 analog audio inputs. The input sensitivity can be set independently for each channel for the appropriate connected audio device (Pro or Consumer line level). The default is -10dBV nominal (Consumer).

21.3 – Audio Output Setup
The unHX2D supports connectivity for analog audio outputs, HDMI audio output and Dante™ audio outputs.

Each channel features independent volume control and mute functions with a mono mixdown option for the Dante™ output channels.

In addition, a configurable 400ms lip sync delay can be adjusted as well as bypassed for the Dante™ output channels 1 and 2.
21.4 – Internal Routing Matrix

The unHX2D supports an internal stereo audio routing matrix, with adjustable -100 to 0dB mix levels from any input to any output.

Enabling the “Mirror HDMI In to SPDIF” out check box will remove the ability to embed audio to the HDMI audio output and all of the associated HDMI Out mix controls will be disabled until the installer disables the SPDIF output mirroring.

21.1 – Dante™ Subscription Status

The current Dante™ receiver and transmitter assignments are shown in this section for convenience. Note that these are read only controls and all routing assignments must be performed in Dante™ Controller or other 3rd party Dante™ routing software.
22 – Synapse D32i Configuration

22.1 – Bank Pad Control
The 32 inputs is split into two banks and each bank has a pad control to set the input level. The pad setting applies to all inputs in the bank and cannot be set individually for each input. Turn the pad on to set nominal +4dBu (pro) input levels or turn it off for nominal -10dBV (consumer) input levels.

22.2 – Mute All On/Off
Clicking the “Mute All On” activates the mute function on all 32 inputs simultaneously. Conversely, the “Mute All Off” deactivates it. Individual mute states are not maintained when these functions are used.

22.3 – Front Panel Lock
Activating the “Front Panel Lock” option will prevent users from changing the monitoring settings from the front panel of the D32i. When enabled, the monitor facility is locked to whatever channel was selected when the lock is applied.

22.4 – Dante™ TX Channel Name
The Dante™ TX channel name is shown just below the channel number for each channel and represents the Dante™ transmit channel name as it appears on the Dante™ network for each analog input channel. The box is small so the entire name may not be displayed. To see the full name, hover over the name and a pop-up hint will appear showing the entire name.

*Note: This field is non-editable. To edit the channel names, use the device list view control or use Dante™ Controller.

22.5 – Mute
Each input has its own mute. The state of the button indicates its state with dark grey meaning the mute is inactive and orange indicating the mute is active. Click the button to change the mute state.
23 – Synapse D32o Configuration

23.1 - Control

23.1.1 – Mute All On/Off
Clicking the “Mute All On” activate the mute function on all 32 outputs simultaneously. Conversely, the “Mute All Off” deactivates it. Individual mute states are not maintained when these functions are used.

23.1.2 – Display Timeout
Clicking the up/down arrows will adjust the time of inactivity before the display goes into sleep mode. The default setting is 30 seconds.

23.1.3 – Front Panel Lock
Activating the “Front Panel Lock” option will prevent users from changing the monitoring settings from the front panel of the D32i. When enabled, the monitor facility is locked to whatever channel was selected when the lock is applied.

23.1.4 – Dante™ TX Channel Name
The Dante™ TX channel name is shown just below the channel number for each channel and represents the Dante™ transmit channel name as it appears on the Dante™ network for each analog input channel. The box is small so the entire name may not be displayed. To see the full name, hover over the name and a pop-up hint will appear showing the entire name.

*Note: This field is non-editable. To edit the channel names, use the device list view control or use Dante™ Controller.
23.1.5 – Pre/Post Metering

The D32o has two modes of metering. Switching between these modes can be done any time using the appropriate radio buttons. The pre-metering mode shows the levels of the audio signals received directly from the Dante™ flows prior to any adjustments the D32o may make. Post-meters show the levels sent to the local outputs after all audio adjustments the D32o may make.

23.1.6 – Channel Mute

Each output has its own mute. The state of the button indicates its state with dark grey meaning the mute is inactive and orange indicating the mute is active. Click the button to change the mute state.

23.1.7 – Channel Volume

Each output has its own volume control. The slider is just to the left of the channel meter and is adjustable from a minimum of -60dB to a maximum of 0dB. To adjust the volume, click on the slider and drag it either up or down. Alternately, click in the text box below the slider and type in the desired level.

23.2 – Output Remapping

The D32o can have the Dante™ input channels remapped to customized analog outputs on the device. Changes are made by simply clicking the desired input/output selection on the grid. The green indicator will show the connection has been made. By default, the input channels are paired to their corresponding outputs of the same values.
24 – Synapse D16Mio Configuration

24.1 – Mute All On/Off
Clicking the “Mute All On” activate the mute function on all 32 inputs simultaneously. Conversely, the “Mute All Off” deactivates it. Individual mute states are not maintained when these functions are used.

24.2 – Front Panel Lock
Activating the “Front Panel Lock” option will prevent users from changing the monitoring settings from the front panel of the D32i. When enabled, the monitor facility is locked to whatever channel was selected when the lock is applied.

24.3 – Display Timeout
Clicking the up/down arrows will adjust the time of inactivity before the display goes into sleep mode. The default setting is 30 seconds.

24.4 – Pre/Post Metering
The D16Mio has two modes of metering. Switching between these modes can be come any time using the appropriate radio buttons. The pre- metering mode shows the levels of the audio signals received directly from the Dante™ flows prior to any adjustments the D16Mio may make. Post- meters show the levels sent to the local outputs after all audio adjustments the D16Mio may make.
24.5 – Input Controls

The 16 inputs have the following control options available per channel:

- Mute
- P48 Phantom Power
- Mic/Line Level Input Select
- Preamp Level Control

24.5.1 – Channel Mute

Each input has its own mute. The state of the button indicates its state with dark grey meaning the mute is inactive and orange indicating the mute is active. Click the button to change the mute state.

24.5.2 – P48 Phantom Power

Each input has its own P48V phantom power option. The state of the button indicates its state with dark grey meaning the phantom power is inactive and orange indicating the phantom power is active. Click the button to change the state.

24.5.3 – Mic/Line Level Input Selector

Each input has its own mic/line level input selector. The state of the button indicates its state with dark grey meaning the Mic input is selected and orange indicating the Line input is selected. Click the button to change the state.

24.5.4 – Preamp Gain

Each input has its own gain control. The slider is just to the left of the channel meter and is adjustable from a minimum of 0dB to a maximum of 51dB. To adjust the volume, click on the slider and drag it either up or down. Alternately, click in the text box below the slider and type in the desired level.
24.6 - Output Controls

The 16 outputs have the following control options available per channel:

- Mute
- Output Level Control

24.6.1 - Channel Mute

Each output has its own mute. The state of the button indicates its state with dark grey meaning the mute is inactive and orange indicating the mute is active. Click the button to change the mute state.

24.6.2 - Channel Volume

Each output has its own volume control. The slider is just to the left of the channel meter and is adjustable from a minimum of -60dB to a maximum of 0dB. To adjust the volume, click on the slider and drag it either up or down. Alternately, click in the text box below the slider and type in the desired level.
25 – Synapse DM1 Configuration

25.1 – Monitoring

25.1.1 – Monitoring Levels
The DM1 metering section shows the levels of the audio signals received directly from the Dante™ flows.

25.1.2 – Line Input 1/2
The Line input metering section shows the levels of the audio signals received at the Line Inputs.

The line inputs have a pad control to set the input level. The pad setting applies to both and cannot be set individually for each input. Turn the pad on to set nominal +4dBu (pro) input levels or turn it off for nominal -10dBV (consumer) input levels.

25.1.3 – Line Output 1/2
Each output has its own volume control. The slider adjustable from a minimum of -127dB to a maximum of 0dB. To adjust the volume, click on the slider and drag it either up or down. Alternately, click in the text box below the slider and type in the desired level.

Each output also has a button to mute the signal.

25.1.4 – Device Setup
25.1.4.1 – Display Timeout
Clicking the up/down arrows will adjust the time of inactivity before the display goes into sleep mode. The default setting is 30 seconds.

25.1.4.2 – Front Panel Lock
Activating the “Front Panel Lock” option will prevent users from changing the monitoring settings from the front panel of the DM1. When enabled, the monitor facility is locked to whatever channel was selected when the lock is applied.

25.1.4.3 – HP Jack Detect
If the jack detect mode is enabled, the speakers will automatically be muted if a headphone plug is inserted.
25.2 – Channel Configuration

The Channel Configuration list consists of three columns:

- Device Name
- Device TX Channel
- Display Name

25.2.1 – Standard Mode

In standard mode, the DM1 allows user selection from any of up to 32 Dante™ audio channels. In this mode, audio is directly assigned using Dante™ Controller to each of the 32 DM1 Dante™ RX channels. In stereo mode, audio is routed in channel pairs to the audio outputs.

Channels are navigated and selected from the front panel controls once they have been assigned.
In extended mode, it is required to first pre-configure a list of monitoring channels using unIFY Control Panel. The channel list can contain up to 128 total mono audio channels, or 64 pairs in stereo mode. It is not necessary to enable all channels. The display names is used to identify monitoring channels via the front panel, this protects the devices on the network from corrupting the channel names that may be used for other routing assignments as subscriptions are updated by the DM1.

Assignments are made by simply clicking and dragging the desired TX channels from the available devices to the desired channel in the configuration window.

Any device that contains Dante™ transmit channels (denoted by a TX in the expanded channel view in the device list), can be assigned by either dragging a single channel label from the device list onto the desired channel list location or by dragging the name of the device in the channel list. If the device name is selected and dragged, then all available channel names will automatically be populated into the channel configuration list.

When channels are applied by the drag and drop feature, the display name is automatically copied over as the Dante™ channel name. If it’s desirable for the end user to be presented with a name that differs from the Dante™ channel name on the network then the name may overridden by entering the desired display name, up to 32 characters in length.

In addition to the channel names, each row of the channel list features an enable checkbox. In order for the channel to be enabled and included in the channel list, this checkbox must be checked. Any channels with the check box not checked will be ignored by the user interface of the DM1.

Once all channel configuration settings have been set up, click the “Apply Channel Configuration” button to send the settings to the DM1.

Channels are navigated and selected from the front panel controls once they have been assigned. Only enabled and assigned channels are available on the front panel for monitor selection.

To quickly remove all assigned channels, click the “Clear Channel Configuration” button, then the “Apply Channel Configuration” button to send the settings to the DM1.
25.2.3 – Stereo Mode

In the Mode Setup controls, the user may select “Enable Stereo” to configure the DM1 in stereo monitoring mode. When this checkbox is selected, the channel list will be altered to show 64 channel pairs (1-L, 1-R, 2-L, 2-R, etc). The “Display name” field is taken from the name assigned to the left hand channel while the right hand channel name is disabled. The same configuration method is used for stereo channel setup as is done for the mono channel monitoring. When the user cycles through the channel list, the audio is output to the corresponding left or right channel on the outputs and monitor speakers, and when monitoring with headphones.
26 – unD32 Configuration

26.1 – Master Mute On/Off
Clicking the “Master Mute” when in the off state activates the mute function on all 32 outputs simultaneously. Conversely, click the “Master Mute” button when in the on state deactivates the master mute. Individual mute states are maintained when these functions are used.

26.2 – Master Volume
Use the master volume to set the maximum overall level on all outputs. It adds no gain, just merely attenuates each output by the indicated value. A value of 0dB would mean no attenuation.

26.3 – UDP Request/Response ports
Sets the port number used to send and receive UDP control message through to control the unD32. The request port is port commands are sent to on the unD32. The response port is which port the D32 sends any responses to commands back to.
26.4 – Pre/Post Metering
The unD32 has two modes of metering. Switching between these modes can be done any time using the appropriate radio buttons. The pre-metering mode shows the levels of the audio signals received directly from the Dante™ flows prior to any adjustments the D32 may make. Post-meters show the levels sent to the local outputs after all audio adjustments the unD32 may make.

26.5 – Dante™ RX Channel Name
The Dante™ RX channel name is shown just below the channel number for each channel and represents the Dante™ receive channel name as it appears on the Dante™ network for each analog output channel. The box is small so the entire name may not be displayed. To see the full name, hover over the name and a pop-up hint will appear showing the entire name.

*Note: This field is non-editable. To edit the channel names, use the device list view control or use Dante™ Controller.

26.6 – Channel Mute
Each output has its own mute. The state of the button indicates its state with dark grey meaning the mute is inactive and orange indicating the mute is active. Click the button to change the mute state.

26.7 – Channel Volume
Each output has its own volume control. The slider is just to the left of the channel meter and is adjustable from a minimum of -60dB to a maximum of 0dB. To adjust the volume, click on the slider and drag it either up or down. Alternately, click in the text box below the slider and type in the desired level.
27 – SoundTube IPD Speaker Configuration

Based on the model of SoundTube Dante™ speakers, there are two modes of setup:
- Biamp
- Full Bandwidth

27.1 – General Settings & Status

27.1.1 – Pink Noise
Check the Enable box to output pink noise for diagnostic purposes. The volume level can be adjusted with the slider, entered into the text field, or using the up/down arrows.

27.1.2 – Status
This section shows the current Amp, Temperature, and Speaker status levels.

27.1.3 – Device Info
This section provides information such as the device name, model, IP and MAC addresses, Location, and firmware version. The Location field is editable for organization of multiple devices.

27.1.4 – Older Preset File
Load preset files from the previous DNA Control software here.
27.2 – BiAmp Mode – Amp Setup

27.2.1 – Power Mode
This section shows the status of the currently used power source. The 40W Enable checkbox should only be selected when used with Soundtube’s switching hardware that supports the 40W mode.

27.2.2 – Impedance Monitor Configuration
This section shows the current status of the speaker voice coil. The impedance monitor will report voice coil failures in response to the built-in speaker self testing as a pass or fail indication. A green LED indicates the speaker is functioning properly, a red LED indicates the speaker voice coil has failed or is approaching failure.
27.3 – Biamp Mode – DSP Setup

27.3.1 – Input & Output Controls
- The input level can be adjusted with the slider, entered into the text field, or using the up/down arrows.
- The output level can be adjusted with the slider, entered into the text field, or using the up/down arrows. There is also a mute option and phase invert.

27.3.2 – EQ Section
The EQ section includes High and Low Pass filters with frequency sliders. Bands 1-8 have adjustable frequencies from 10Hz to 22kHz. Gain is adjustable from -30dB to 6dB. The BW slider adjusts to cover a narrow to wider slope for the assigned frequency.
- Bypass EQ – passes all audio without EQ applied
- Reset EQ – resets all EQ band gain settings to 0dB

27.3.3 – Delay
In large systems with multiple speakers to cover a large area, it is necessary to set a delay on the supplemental speakers for coherence and synchronization of the sound. Adjustments are made via the slider or text field.
27.4 – Full Bandwidth Mode – Amp Setup

27.4.1 – Power Mode
This section shows the status of the currently used power source. The 40W Enable checkbox should only be selected when used with SoundTube’s switching hardware that supports the 40W mode.

27.4.2 – Impedance Monitor Configuration
This section shows the current status of the speaker voice coil. The impedance monitor will report voice coil failures in response to the built-in speaker self testing as a pass or fail indication. A green LED indicates the speaker is functioning properly, a red LED indicates the speaker voice coil has failed or is approaching failure.

The checkboxes allow each external speaker output to be included or ignored when reporting the impedance monitoring results.
27.5 – Full Bandwidth Mode – DSP Setup

27.5.1 – Input Mode
The full bandwidth output speaker models include an option to process Dante input from one or two channels.

When “Single channel input” is selected, both processing chains for CH1 and CH2 controls are fed with the same Dante RX channel.

When “2 CH channel input” is selected, each processing chain for CH1 and CH2 controls are fed with a unique Dante RX channel (CH1 receives the first Dante RX channel and Ch2 receives the second Dante RX channel).

27.5.2 – CH1/CH2
- CH1 – Master/Speaker3 – This tab allows configuration for the main and Speaker 3 output on the device.
- CH2 – Speaker 1/Speaker2 – This tab allows configuration for the Speaker 1 and 2 output on the device.

27.5.3 – Input & Output Controls
- The input level can be adjusted with the slider, entered into the text field, or using the up/down arrows.
- The output level can be adjusted with the slider, entered into the text field, or using the up/down arrows. There is also a mute option and phase invert.

27.5.4 – EQ Section
The EQ section includes High and Low Pass filters with frequency sliders. Bands 1-8 have adjustable frequencies from 10Hz to 22kHz. Gain is adjustable from -30dB to 6dB. The BW slider adjusts to cover a narrow to wider slope for the assigned frequency.
- Bypass EQ – passes all audio without EQ applied
- Reset EQ – resets all EQ band gain settings to 0dB

27.5.5 – Delay
In large systems with multiple speakers to cover a large area, it is necessary to set a delay on the supplemental speakers for coherence and synchronization of the sound. Adjustments are made via the slider or text field.
The configuration form for the Zip4/Zip4-3G is organized into the following key sections:

- **Device** – Configure the LED and Backlight brightness levels
- **Network** – Test and Control Server IP settings
- **Security** – Set the Lock Behavior and Security Code for the device.

Checking **Identify** in the Device Info section will make the Ready and Busy LEDs blink green to easily find the device when multiple units are in an installation. Unchecking will stop the blinking.
28.1 – Device

Each button represents the main panel on the Zip4/Zip4-3G and can be clicked to confirm proper operation of the LEDs on the panel. The LED triangles and PTT will show the color as represented on the Zip4/Zip4-3G front panel. Based on the number of clicks, the following LED status is shown:

1. Green
2. Red
3. LED return to off status

*Note: The PTT button will only activate when a Zip4-3G unit is connected.

28.1.1 – Intensity

Intensity levels can be set for the LEDs in the following:

- Red
- Green
- Backlight

While LEDs are on the intensity can be adjusted using either the slider, or number field. The backlight can also be disabled by unchecking the Enable box.

28.2 – Network

The Network sections allows for self-testing the panel functionality of the device, along with setting the IP and Port addresses of the desired Control Server.

28.2.1 – Device Test

The Map to unIFY (unicast) function allows for testing the button functionality on the Zip4/Zip4-3G. When checked, pressing the Zone and PTT (for Zip4-3G only) will light the buttons in unIFY orange.

When checked, the Control Server setting is bypassed.

28.2.2 – Control Server

Use the text fields to fill in the IP and Port settings for the desired Control Server.
28.3 – Security

The Security panel is broken into three sections:
- Unlock Mode
- Lock Behavior
- Security Code

28.3.1 – Unlock Mode
Based on the selected setting, Use Security Code represents two possible behaviors:
- Unchecked – The front panel is always unlocked and immediately accessible
- Checked – Security Code and Lock Behavior settings are enabled. The device must be unlocked to operate.

28.3.2 – Lock Behavior
Two settings are available under Lock Behavior:
- State – Force Locked and Force Unlocked allow locking and unlocking of the front panel bypassing the timeout timer and security code functions.
- Timeout – Use the number field to set the time (in minutes) for the front panel to lock.

28.3.3 – Security Code
Use the number fields to create a code to unlock the front panel on the device. Only numbers 1 through 4 may be used to coincide with the numbered zone buttons. Click Apply when the desired code has been entered.

When enabled, immediately enter code using the zone buttons to unlock. All LEDs will flash green to signify the unit is now unlocked.
29 – unAI02X2+ Configuration

The configuration form for the unAI02X2+ is organized into the following key sections:

- **Device Control** – Comprises the analog input audio parameters
- **Stream/Device Configuration** – Comprises of the network audio parameters

Note: Any changes made to device control settings will only persist until power is cycled on the device. To retain the settings, they must be stored to Preset 0 using the “Save Presets” feature within unIFY Control Panel.
29.1 – Device Control

29.1.1 – Preamp Control
The preamp control section allows the user to adjust the microphone preamp gain settings, enable a -12dB pad and set the phantom power state for the corresponding inputs. Gain settings available on the gain control are 0dB, +15db, +30dB and +45dB. The “Pad” option can be applied to any gain level and applies an attenuation of 12dB to the audio signal.

29.1.2 – Output Volume Control
The volume control allows the user to adjust the audio level of the corresponding analog output. Volume settings are between 0 and -60dB.

*Note: The volume control does not apply any gain to the output signal. It is only an attenuation only control.

29.1.3 – Mute Control
The mute control allows the user to mute/unmute the corresponding analog output.

29.1.4 – RX Channel Assignment
This text field reports the currently assigned AES67 transmit channel assigned to the corresponding output. To change the channel being supplied to a particular output, use the “AES67 Rx Setup” section on the “Stream Configuration” tab.

29.1.5 – Metering
All unAIO2x2+ units have an option that allows metering. The meters are shown for both inputs and outputs and the output meters show both pre- and post- output volume/mute control levels but they will only operate when the metering function is enabled. The metering data is disabled by default. It is recommended that the metering only be turned on for diagnostics/debug purposes but is then turned off for normal operation especially if there are multiple units on the network.
29.2 – Stream Control

The stream control tab shows the various settings to configure both transmit streams for the unAIO2x2+ and receive streams to the unAIO2x2+. There are also some device settings such as device name and IP address configuration.

29.2.1 – AES67 Tx Setup

The parameters in this section are used to define the transmit stream from this device. By default, the audio transmitter is turned off. The stream comprises of three channels. The first two channels are the audio from the local analog inputs in order and the third is a diagnostic pilot tone.

Each stream has a name to identify it and a multicast IP address that the stream uses. The name is 32 characters long and by default is the name of the device itself. This can be changed if required but needs to be unique. The stream IP address is the multicast IP address that the stream will be sent to. This IP address must be a unique multicast address on the network.

Note: The software does not check the name or IP address is unique and it therefore up to the user to ensure that these values are not used again on other devices.

Check the “Enable” option to setup the transmit stream. When active and correctly working, the stream status indicator will show green.
29.2.2 – AES67 Rx Setup

The AES67 Rx setup section allows the user to see and/or select which stream and specifically which channel within a stream is allocated to each analog output. For each output, the current settings for assigned stream and channel are shown, as well as an indication if the assigned stream is active and also if that output is muted or not (the mute control is a duplicate of the output mute control on the Device Control tab).

Audio channels may be assigned to an output in two ways:

1) The drag and drop method - By clicking the “+” sign next to a stream name in stream list on the lower left hand side of the GUI, the stream will expand to show its individual channels. With the stream expanded, click and drag that exact channel from the desired stream and drop it onto the desired output. Doing so will populate both the assigned stream and channel number fields for that output channel.

2) Manually - Manually type the stream name and channel number in the boxes provided.

Once the correct streams have been allocated, click the “Apply” button to apply the changes to the unit. If the stream is being received correctly, the stream indicator will turn green. If a stream is allocated but not received for some reason, the indicator will show red.

29.2.3 – AES67 Status

The fields indicated in this section are for monitoring purposes only. The PTP Clock Status indicates if the device is sync’d to the main system clock. A green indicator show that it is. The clock role indicates if the device has been elected to be a clock master or is just a clock slave. The two priority fields show what the device priorities are set too which form part of the clock master election process.

29.2.4 – Device Configuration

The device configuration shows the various device wide settings. This includes the devices name and IP address, and the settings for the pilot tone.

The device name defaults to unAD02X2-xxxxxx where xxxxxx is the last six digits of the devices MAC address. The name can be changed and changes will be applied by pressing “Enter” or by selecting a different control than the device name edit box.

Note: Changing the name will force a reboot of the device.

The device IP address configuration indicates the current IP setup. The devices IP can be configured as either static or dynamic. Changes to the setup are applied using the “Apply IP” button.

The pilot tone settings are used to configure an additional diagnostic tone channel that is included in the transmit stream. If enabled, an internally generated sine wave of the given frequency and volume is add to the transmit stream in addition to the two analog input audio channels.
30- unA4O Configuration

The configuration form for the unA4O is organized into the following key sections:

- **Device Control** - Comprises the analog input audio parameters
- **Stream/Device Configuration** - Comprises of the network audio parameters

*Note: Any changes made to device control settings will only persist until power is cycled on the device. To retain the settings, they must be stored to Preset 0 using the "Save Presets" feature within unIFY Control Panel.

30.1 – Device Control

30.1.1 – Output Volume Control

The volume control allows the user to adjust the audio level of the corresponding analog output. Volume settings are between 0 and -60dB.

*Note: The volume control does not apply any gain to the output signal. It is only an attenuation only control.

30.1.2 – Mute Control

The mute control allows the user to mute/unmute the corresponding analog output.
30.1.3 – RX Channel Assignment
This text field reports the currently assigned AES67 transmit channel assigned to the corresponding output. To change the channel being supplied to a particular output, use the “AES67 Rx Setup” section on the “Stream Configuration” tab.

30.1.4 – Metering
All unA4O units have an option that allows metering. The output meters show both pre- and post- output volume/mute control levels but they will only operate when the metering function is enabled. The metering data is disabled by default. It is recommended that the metering only be turned on for diagnostics/debug purposes but is then turned off for normal operation especially if there are multiple units on the network.

30.2 – Stream Control
The stream control tab shows the various settings to configure both transmit streams for the unA4O and receive streams to the unA4O. There are also some device settings such as device name and IP address configuration.

30.2.1 – AES67 Tx Setup
The parameters in this section are used to define the transmit stream from this device. By default, the audio transmitter is turned off. The stream comprises of three channels. The first two channels are the audio from the local analog inputs in order and the third is a diagnostic pilot tone.

Each stream has a name to identify it and a multicast IP address that the stream uses. The name is 32 characters long and by default is the name of the device itself. This can be changed if required but needs to be unique. The stream IP address is the multicast IP address that the stream will be sent to. This IP address must be a unique multicast address on the network.

*Note: The software does not check the name or IP address is unique and it therefore up to the user to ensure that these values are not used again on other devices.

Check the “Enable” option to setup the transmit stream. When active and correctly working, the stream status indicator will show green.
30.2.2 – AES67 Rx Setup

The AES67 Rx setup section allows the user to see and/or select which stream and specifically which channel within a stream is allocated to each analog output. For each output, the current settings for assigned stream and channel are shown, as well as an indication if the assigned stream is active and also if that output is muted or not (the mute control is a duplicate of the output mute control on the Device Control tab).

Audio channels may be assigned to an output in two ways:

1) The drag and drop method - By clicking the “+” sign next to a stream name in stream list on the lower left hand side of the GUI, the stream will expand to show its individual channels. With the stream expanded, click and drag that exact channel from the desired stream and drop it onto the desired output. Doing so will populate both the assigned stream and channel number fields for that output channel.

2) Manually – Manually type the stream name and channel number in the boxes provided.

Once the correct streams have been allocated, click the “Apply” button to apply the changes to the unit. If the stream is being received correctly, the stream indicator will turn green. If a stream is allocated but not received for some reason, the indicator will show red.

30.2.3 – AES67 Status

The fields indicated in this section are for monitoring purposes only. The PTP Clock Status indicates if the device is sync’d to the main system time. A green indicator show that it is. The clock role indicates if the device has been elected to be a clock master or is just a clock slave. The two priority fields show what the device priorities are set to which form part of the clock master election process. PTP Domain can also be selected in this section.

30.2.4 – Device Configuration

The device configuration shows the various device wide settings. This includes the devices name and IP address, and the settings for the pilot tone.

The device name defaults to unA40-xxxxxx where xxxxx is the last six digits of the devices MAC address. The name can be changed and changes will be applied by pressing “Enter” or by selecting a different control than the device name edit box.

*Note: Changing the name will force a reboot of the device.

The device IP address configuration indicates the current IP setup. The devices IP can be configured as either static or dynamic. Changes to the setup are applied using the “Apply IP” button.

The pilot tone settings are used to configure an additional diagnostic tone channel that is included in the transmit stream. If enabled, an internally generated sine wave of the given frequency and volume is add to the transmit stream in addition to the two analog input audio channels.
The configuration form for the unAX2IO+ is organized into the following key sections:

- **Device Control** – Comprises the analog input audio parameters
- **Stream/Device Configuration** – Comprises of the network audio parameters

Note: Any changes made to device control settings will only persist until power is cycled on the device. To retain the settings, they must be stored to Preset 0 using the “Save Presets” feature within unIFY Control Panel.
31.1 – Device Control

31.1.1 – Preamp Controls (Inputs 1 & 2 only)
The Preamp Control section allows the user to adjust the microphone preamp gain settings and phantom power states for the corresponding XLR inputs.

31.1.2 – Pad Controls (Inputs 3 & 4 only)
The Pad Control section allows the user to adjust the preamp gain settings for the corresponding Phoenix connector inputs. Each input can be set to either a “Pro” or a “Consumer” setting depending on the expected input level.

31.1.3 – Volume Control
The volume control allows the user to adjust the audio level of the corresponding analog output. Volume settings are between 0 and -60dB.

*Note: The volume control goes not apply any gain to the output signal. It is only an attenuation only control.

31.1.4 – Mute Control
The mute control allows the user to mute/unmute the corresponding analog output.

31.1.5 – RX Channel Assignment
This text field reports the currently assigned AES67 transmit channel assigned to the corresponding output. To change the channel being supplied to a particular output, use the “AES67 Rx Setup” section on the “Stream Configuration” tab.

31.1.6 – Metering
All unAX2IO+ units have an option that allows metering. The meters are shown for both inputs and outputs and the output meters show both pre- and post- output volume/mute control levels but they will only operate when the metering function is enabled. The metering data is disabled by default. It is recommended that the metering only be turned on for diagnostics/debug purposes but is then turned off for normal operation especially if there are multiple units on the network.
31.2 – Stream Control

The stream control tab shows the various settings to configure both transmit streams for the unAX2IO+ and receive streams to the unAX2IO+. There are also some device settings such as device name and IP address configuration.

31.2.1 – AES67 Tx Setup

The parameters in this section are used to define the transmit stream from this device. By default, the audio transmitter is turned off. The stream comprises of three channels. The first two channels are the audio from the local analog inputs in order and the third is a diagnostic pilot tone.

Each stream has a name to identify it and a multicast IP address that the stream uses. The name is 32 characters long and by default is the name of the device itself. This can be changed if required but needs to be unique. The stream IP address is the multicast IP address that the stream will be sent to. This IP address must be a unique multicast address on the network.

*Note: The software does not check the name or IP address is unique and it therefore up to the user to ensure that these values are not used again on other devices.

Check the “Enable” option to setup the transmit stream. When active and correctly working, the stream status indicator will show green.
31.2.2 – AES67 Rx Setup

The AES67 Rx setup section allows the user to see and/or select which stream and specifically which channel within a stream is allocated to each analog output. For each output, the current settings for assigned stream and channel are shown, as well as an indication if the assigned stream is active and also if that output is muted or not (the mute control is a duplicate of the output mute control on the Device Control tab).

Audio channels may be assigned using the drag and drop method - by clicking the “+” sign next to a stream name in stream list on the lower left hand side of the GUI, the stream will expand to show its individual channels. With the stream expanded, click and drag that exact channel from the desired stream and drop it onto the desired output. Doing so will populate both the assigned stream and channel number fields for that output channel.

Once the correct streams have been allocated, click the “Apply” button to apply the changes to the unit. If the stream is being received correctly, the stream indicator will turn green. If a stream is allocated but not received for some reason, the indicator will show red.

31.2.3 – AES67 Status

The fields indicated in this section are for monitoring purposes only. The PTP Clock Status indicates if the device is synced to the main system clock. A green indicator shows that it is. The clock role indicates if the device has been elected to be a clock master or is just a clock slave. The two priority fields show what the device priorities are set to which form part of the clock master election process.

31.2.4 – Device Configuration

The device configuration shows the various device wide settings. This includes the devices name and IP address, and the settings for the pilot tone.

The device name defaults to unAIO2X2-xxxxxx where xxxxxx is the last six digits of the devices MAC address. The name can be changed and changes will be applied by pressing “Enter” or by selecting a different control than the device name edit box.

*Note: Changing the name will force a reboot of the device.

The device IP address configuration indicates the current IP setup. The devices IP can be configured as either static or dynamic. Changes to the setup are applied using the “Apply IP” button.

The pilot tone settings are used to configure an additional diagnostic tone channel that is included in the transmit stream. If enabled, an internally generated sine wave of the given frequency and volume is added to the transmit stream in addition to the two analog input audio channels.
The configuration form for the unA6IO is organized into the following key sections:

- **Device Control** – Comprises the analog input audio parameters
- **Stream/Device Configuration** – Comprises of the network audio parameters

Note: Any changes made to device control settings will only persist until power is cycled on the device. To retain the settings, they must be stored to Preset 0 using the “Save Presets” feature within unIFY Control Panel.
32.1 – Device Control

32.1.1 – Preamp Control
The Preamp Control section allows the user to adjust the microphone preamp gain settings and phantom power states for the corresponding inputs.

32.1.2 – Input Select Control
The unA6IO features an input selection option for the line level analog inputs routed to Dante™ transmitter channels 3 and 4. To select the active input, click on the desired radio button in the Input Selection control.

The selectable options are:
- Input A (RCA Inputs)
- Input B (3.5mm TRS input)
- A+B (Mono sum of both inputs A and B)

32.1.3 – Volume Control
The volume control allows the user to adjust the audio level of the corresponding analog output. Volume settings are between 0 and -60dB.

*Note: The volume control goes not apply any gain to the output signal. It is only an attenuation only control.

32.1.4 – Mute Control
The mute control allows the user to mute/unmute the corresponding analog output.

32.1.5 – RX Channel Assignment
This text field reports the currently assigned AES67 transmit channel assigned to the corresponding output. To change the channel being supplied to a particular output, use the “AES67 Rx Setup” section on the “Stream Configuration” tab.

32.1.6 – Metering
All unA6IO units have an option that allows metering. The meters are shown for both inputs and outputs and the output meters show both pre- and post- output volume/mute control levels but they will only operate when the metering function is enabled. The metering data is disabled by default. It is recommended that the metering only be turned on for diagnostics/debug purposes but is then turned off for normal operation especially if there are multiple units on the network.
32.2- Stream Control

The stream control tab shows the various settings to configure both transmit streams for the unA6iO and receive streams to the unA6iO. There are also some device settings such as device name and IP address configuration.

32.2.1 – AES67 Tx Setup

The parameters in this section are used to define the transmit stream from this device. By default, the audio transmitter is turned off. The stream comprises of three channels. The first two channels are the audio from the local analog inputs in order and the third is a diagnostic pilot tone.

Each stream has a name to identify it and a multicast IP address that the stream uses. The name is 32 characters long and by default is the name of the device itself. This can be changed if required but needs to be unique. The stream IP address is the multicast IP address that the stream will be sent to. This IP address must be a unique multicast address on the network.

Note: The software does not check the name or IP address is unique and it therefore up to the user to ensure that these values are not used again on other devices.

Check the “Enable” option to setup the transmit stream. When active and correctly working, the stream status indicator will show green.
32.2.2 – AES67 Rx Setup

The AES67 Rx setup section allows the user to see and/or select which stream and specifically which channel within a stream is allocated to each analog output. For each output, the current settings for assigned stream and channel are shown, as well as an indication if the assigned stream is active and also if that output is muted or not (the mute control is a duplicate of the output mute control on the Device Control tab).

Audio channels may be assigned to an output in two ways:
1) The drag and drop method - By clicking the “+” sign next to a stream name in stream list on the lower left hand side of the GUI, the stream will expand to show its individual channels. With the stream expanded, click and drag that exact channel from the desired stream and drop it onto the desired output. Doing so will populate both the assigned stream and channel number fields for that output channel.
2) Manually - Manually type the stream name and channel number in the boxes provided.

Once the correct streams have been allocated, click the “Apply” button to apply the changes to the unit. If the stream is being received correctly, the stream indicator will turn green. If a stream is allocated but not received for some reason, the indicator will show red.

32.2.3 – AES67 Status

The fields indicated in this section are for monitoring purposes only. The PTP Clock Status indicates if the device is sync'd to the main system clock. A green indicator show that it is. The clock role indicates if the device has been elected to be a clock master or is just a clock slave. The two priority fields show what the device priorities are set too which form part of the clock master election process.

32.2.4 – Device Configuration

The device configuration shows the various device wide settings. This includes the devices name and IP address, and the settings for the pilot tone.

The device name defaults to unA61O-xxxxxx where xxxxxx is the last six digits of the devices MAC address. The name can be changed and changes will be applied by pressing “Enter” or by selecting a different control than the device name edit box.

*Note: Changing the name will force a reboot of the device.

The device IP address configuration indicates the current IP setup. The devices IP can be configured as either static or dynamic. Changes to the setup are applied using the “Apply IP” button.

The pilot tone settings are used to configure an additional diagnostic tone channel that is included in the transmit stream. If enabled, an internally generated sine wave of the given frequency and volume is add to the transmit stream in addition to the two analog input audio channels.
33 – unA6IO-BT Configuration

The configuration form for the unA6IO-BT is organized into the following key sections:

- **Device Control** – Comprises the analog input audio parameters
- **Stream/Device Configuration** – Comprises of the network audio parameters

Note: Any changes made to device control settings will only persist until power is cycled on the device. To retain the settings, they must be stored to Preset 0 using the “Save Presets” feature within unIFY Control Panel.
33.1 – Device Control

33.1.1 – Bluetooth® Friendly Name
The Name field allows the installer to configure an appropriate Bluetooth® friendly name that will be visible to users on their Bluetooth® equipped devices when attempting to connect. This allows for multiple unA6IO-BT devices to be placed in close proximity and still provide clarity to users trying to connect to a particular unA6IO-BT device and audio system.

33.1.2 – Status
This field reports the Bluetooth® interface status. The possible states are “Idle”, “Discoverable” and “Connected”. Changes to the device’s Bluetooth® related parameters are disabled in all states except the “Idle” state.

33.1.3 – Disable Pairing Button
This checkbox allows the installer to lock out the front panel pairing functionality for applications that require restricted access to the audio system.

33.1.4 – Clear Pairings
This function clears the actively paired devices in the pairing list. This is generally not required but may help in resolving any connectivity issues that users experience.

33.1.5 – Close Connection
This function remotely closes the active Bluetooth® connection and function is only active when the Bluetooth® status is “Connected”.

33.1.6 – Input Select Control
The unA6IO-BT features an input selection option for the line level analog inputs routed to Dante™ transmitter channels 3 and 4. To select the active input, click on the desired radio button in the Input Selection control.

The selectable options are:
- Input A (RCA Input)
- Input B (3.5mm TRS input)
- A+B (Mono sum of both inputs A and)
33.1.7 – Volume Control
The volume control allows the user to adjust the audio level of the corresponding analog output. Volume settings are between 0 and -60dB.

*Note: The volume control goes not apply any gain to the output signal. It is only an attenuation only control.

33.1.8 – Mute Control
The mute control allows the user to mute/unmute the corresponding analog output.

33.1.9 – RX Channel Assignment
This text field reports the currently assigned AES67 transmit channel assigned to the corresponding output. To change the channel being supplied to a particular output, use the “AES67 Rx Setup” section on the “Stream Configuration” tab.

33.1.10 – Metering
All unA6iO-BT units have an option that allows metering. The meters are shown for both inputs and outputs and the output meters show both pre- and post- output volume/mute control levels but they will only operate when the metering function is enabled. The metering data is disabled by default. It is recommended that the metering only be turned on for diagnostics/debug purposes but is then turned off for normal operation especially if there are multiple units on the network.
33.2 – Stream Control

The stream control tab shows the various settings to configure both transmit streams for the unA6IO-BT and receive streams to the unA6IO-BT. There are also some device settings such as device name and IP address configuration.

33.2.1 – AES67 Tx Setup

The parameters in this section are used to define the transmit stream from this device. By default, the audio transmitter is turned off. The stream comprises of three channels. The first two channels are the audio from the local analog inputs in order and the third is a diagnostic pilot tone.

Each stream has a name to identify it and a multicast IP address that the stream uses. The name is 32 characters long and by default is the name of the device itself. This can be changed if required but needs to be unique. The stream IP address is the multicast IP address that the stream will be sent to. This IP address must be a unique multicast address on the network.

Note: The software does not check the name or IP address is unique and it therefore up to the user to ensure that these values are not used again on other devices.

Check the “Enable” option to setup the transmit stream. When active and correctly working, the stream status indicator will show green.
33.2.2 – AES67 Rx Setup

The AES67 Rx setup section allows the user to see and/or select which stream and specifically which channel within a stream is allocated to each analog output. For each output, the current settings for assigned stream and channel are shown, as well as an indication if the assigned stream is active and also if that output is muted or not (the mute control is a duplicate of the output mute control on the Device Control tab).

Audio channels may be assigned to an output in two ways:
3) The drag and drop method - By clicking the “+” sign next to a stream name in the stream list on the lower left hand side of the GUI, the stream will expand to show its individual channels. With the stream expanded, click and drag that exact channel from the desired stream and drop it onto the desired output. Doing so will populate both the assigned stream and channel number fields for that output channel.
4) Manually – Manually type the stream name and channel number in the boxes provided

Once the correct streams have been allocated, click the “Apply” button to apply the changes to the unit. If the stream is being received correctly, the stream indicator will turn green. If a stream is allocated but not received for some reason, the indicator will show red.

33.2.3 – AES67 Status

The fields indicated in this section are for monitoring purposes only. The PTP Clock Status indicates if the device is synced to the main system clock. A green indicator shows that it is. The clock role indicates if the device has been elected to be a clock master or is just a clock slave. The two priority fields show what the device priorities are set to which form part of the clock master election process.

33.2.4 – Device Configuration

The device configuration shows the various device wide settings. This includes the device name and IP address, and the settings for the pilot tone.

The device name defaults to unAIO2X2-xxxxxx where xxxxxx is the last six digits of the device’s MAC address. The name can be changed and changes will be applied by pressing “Enter” or by selecting a different control than the device name edit box.

*Note: Changing the name will force a reboot of the device.

The device IP address configuration indicates the current IP setup. The devices IP can be configured as either static or dynamic. Changes to the setup are applied using the “Apply IP” button.

The pilot tone settings are used to configure an additional diagnostic tone channel that is included in the transmit stream. If enabled, an internally generated sine wave of the given frequency and volume is added to the transmit stream in addition to the two analog input audio channels.
34 – unAX4I Configuration

The configuration form for the unAX4I is organized into the following key sections:

- **Device Control** – Comprises the analog input audio parameters
- **Stream/Device Configuration** – Comprises of the network audio parameters

*Note: Any changes made to device control settings will only persist until power is cycled on the device. To retain the settings, they must be stored to Preset 0 using the “Save Presets” feature within unIFY Control Panel.
34.1 – Device Control

34.1.1 – Preamp Control
The Preamp Control section allows the user to adjust the microphone preamp gain settings and phantom power states for the corresponding inputs.

34.1.2 – Volume Control
The volume control allows the user to adjust the audio level of the corresponding analog output. Volume settings are between 0 and -60dB.

*Note: The volume control goes not apply any gain to the output signal. It is only an attenuation only control.

34.1.3 – Mute Control
The mute control allows the user to mute/unmute the corresponding analog output.

34.1.4 – RX Channel Assignment
This text field reports the currently assigned AES67 transmit channel assigned to the corresponding output. To change the channel being supplied to a particular output, use the “AES67 Rx Setup” section on the “Stream Configuration” tab.

34.1.5 – Metering
All unAX4I units have an option that allows metering. The meters are shown for both inputs and outputs and the output meters show both pre- and post- output volume/mute control levels but they will only operate when the metering function is enabled. The metering data is disabled by default. It is recommended that the metering only be turned on for diagnostics/debug purposes but is then turned off for normal operation especially if there are multiple units on the network.
34.2 – Stream Control

The stream control tab shows the various settings to configure both transmit streams for the unAX4I and receive streams to the unAX4I. There are also some device settings such as device name and IP address configuration.

34.2.1 – AES67 Tx Setup

The parameters in this section are used to define the transmit stream from this device. By default, the audio transmitter is turned off. The stream comprises of three channels. The first two channels are the audio from the local analog inputs in order and the third is a diagnostic pilot tone.

Each stream has a name to identify it and a multicast IP address that the stream uses. The name is 32 characters long and by default is the name of the device itself. This can be changed if required but needs to be unique. The stream IP address is the multicast IP address that the stream will be sent to. This IP address must be a unique multicast address on the network.

*Note: The software does not check the name or IP address is unique and it therefore up to the user to ensure that these values are not used again on other devices.

Check the “Enable” option to setup the transmit stream. When active and correctly working, the stream status indicator will show green.
34.2.2 – AES67 Rx Setup

The AES67 Rx setup section allows the user to see and/or select which stream and specifically which channel within a stream is allocated to each analog output. For each output, the current settings for assigned stream and channel are shown, as well as an indication if the assigned stream is active and also if that output is muted or not (the mute control is a duplicate of the output mute control on the Device Control tab).

Audio channels may be assigned to an output in two ways:
5) The drag and drop method - By clicking the “+” sign next to a stream name in stream list on the lower left hand side of the GUI, the stream will expand to show its individual channels. With the stream expanded, click and drag that exact channel from the desired stream and drop it onto the desired output. Doing so will populate both the assigned stream and channel number fields for that output channel.
6) Manually – Manually type the stream name and channel number in the boxes provided.

Once the correct streams have been allocated, click the “Apply” button to apply the changes to the unit. If the stream is being received correctly, the stream indicator will turn green. If a stream is allocated but not received for some reason, the indicator will show red.

34.2.3 – AES67 Status

The fields indicated in this section are for monitoring purposes only. The PTP Clock Status indicates if the device is sync’d to the main system clock. A green indicator show that it is. The clock role indicates if the device has been elected to be a clock master or is just a clock slave. The two priority fields show what the device priorities are set too which form part of the clock master election process.

34.2.4 – Device Configuration

The device configuration shows the various device wide settings. This includes the devices name and IP address, and the settings for the pilot tone.

The device name defaults to unAIO2X2:xxxxxx where xxxxxx is the last six digits of the devices MAC address. The name can be changed and changes will be applied by pressing “Enter” or by selecting a different control than the device name edit box.

Note: Changing the name will force a reboot of the device.

The device IP address configuration indicates the current IP setup. The devices IP can be configured as either static or dynamic. Changes to the setup are applied using the “Apply IP” button.

The pilot tone settings are used to configure an additional diagnostic tone channel that is included in the transmit stream. If enabled, an internally generated sine wave of the given frequency and volume is add to the transmit stream in addition to the two analog input audio channels.